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Abstract

This paper shows that different algorithmic methods can generate self-symmetrical
Sierpinski fractals. A first category deals with a hyperincursive generator based on a
composition rule applied to a defined path in the frame. A second category of
algorithms is based on a recursive generator obeying certain symmetries. This paper will
consider generalised Sierpinski fractals generated by modulo 2 and modulo 3. Even and
odd modulo give rise to very different properties of symmetry.
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1 Introduction

Let us recall a simple generator of Sierpinski gasket based on cellular automata. A one-
dimensional network of cellular automata is represented by a vector of automata states
starting with initial values at time t=0. A set of rules defines how the states change at every
clock time. A simple rule consists of computing the value of the state of each automaton at
time t+1 by the sum modulo M of itself and its left neighbour at the preceding time t, for
each clock time t=0,1,2,3, etc. The following recursive automata exhibit fractal structures

X(n,t+1) =[ X(n,t) + X(n—1,t) ] mod M €))

with t=0,1,2,... and n=1,2,..., starting with initial conditions X(n,0), n=1,2,... at time t=0 and
boundary conditions X(0,t) at each time step t=1,2,... , where mod M is the modulo M. For
M=2, the fractal is the Sierpinski gasket given in Figure 1a. At each clock time, the order in
which the computations are performed is without importance (parallel iterations).
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n=012345678 n=012345678

t=0 010000000 010000000
t=1 011000000 otr1111111
t=2 010100000 010101010
t=3 011110000 011001100
t=4 010001000 010001000
t=35 011001100 011110000
t=6 010101010 010100000
t=7 011111111 011000000
t=8 010000000 010000000

Figure 1a-b: Fractal Sierpinski gasket computed from recursive eq. 1 and incursive eq. 2.

Dubois (1992) proposed a new type of automata (the fractal machine) where the order in
which the computations are performed is to be ruled. The following hyperincursive
automata give rise to fractals of the same class as Sierpinski gasket

X(n,t+1) = [X(n,t)) + X(n—1,t+1)] mod M (2)
This equation is an incursion, an inclusive or implicit recursion, because the state of an

automaton is a function of another automaton at the future time. This is computed in a
sequential order, in giving initial conditions X(n,0) and boundary conditions X(0,t+1) at the

- future time t+1, for each time t=0,1,2, ... Figure 1b gives the Sierpinski gasket from the

incursive eq. 2 with M = 2. Such incursive automata will be called hyperincursive automata
because there are a lot of different paths which can be defined for computing successively
the automata, as this will be shown in this paper. Let us notice that such hyperincursive
system sometimes may exhibit uncertainty and indecidability when the system defined
itself its boundary conditions in a self-referential way (Dubois, 1996).

This paper shows that different algorithmic methods can generate self-symmetrical
fractals. The Sierpinski fractal is taken as an example.

A first category deals with global permutations of rows of the fractal frame from
hyperincursive automata. Self-symmetrical Sierpinski fractals will be generated by
modulo 2 and 3. With an odd modulo 3, very different properties of symmetry, defined
in Dubois (1996c), exhibit original self-symmetrical fractals, never presented in the
literature at our knowledge.

A second category of algorithms is based on local translations, permutations and
rotations inside the fractal frame. Peitgen et al (1992) uses a recursive generator obeying
certain symmetries. These fractals are based on modulo 2.

Let us first introduce the concept of fractal dimension related to self-symmetry.
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2 Fractal Dimensions and Self-Symmetry

B. B. Mandelbrot (1983) defined a fractal dimension dealing with fractional dimension
instead of integer dimension. There is no more a characteristic length to define the scale
of the system. There is an scale invariance: in looking at a fractal pattern at different
scales, a similar or affine pattern appears. The fractal dimensions can be computed by
box counting (Peitgen et al, 1992) from the relation

D = [1n N(dgur) ~ In N(o)}1n (d/ds) Lo

where N(d,,) represents the number of boxes, of length d,,, containing at least one automaton
at state different of 0, to cover the pattern, in considering different scales n.

This fractal dimension can be related to the measure of information of Shannon.

The box counting and information are embedded in the Rényi g order dimensions

Dy =Iy(s)In(1/s) (3a)
where
I(s)=(1/(1-Q)ln = p? (3b)

is the q™ order Rényi information. In egs. 3ab, py are the automata state probabilities in the
k™ box of length s, in assuming that they sum upto 1, Z p, = 1.
Forq=90

Iy(s) = In N(s) (3¢)

where N(s) is the number of non empty boxes of linear size s. So Dy = D, the usual box
counting fractal dimension.
Forg=1

Li(s)=-ZpcInp (3d)

is the Shannon information, and D, is the information dimension.

For q =2, D, is the correlation dimension, etc. In general D, > D, for any p<q. For fractals
with uniform structure, like those considered in this paper, all dimensions D have the same
value.

Very curiously, the fractal dimension is not dependent on the symmetry properties of the
fractal patterns. So, manyd:ﬁ‘eremﬁacta]pauemsvwmmesameﬁactal dimension can be
generated with different symmetries.
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Euclidean geometry deals with integer space-time dimensions. If all the points of a space
can be filled with points, the fractal dimension is the Euclidean dimension: D=1 for a line,
D=2 for a surface, and D=3 for a volume. Let us consider the following Euclidean space of
dimension 2 in Figs 2 ab. The space in Fig. 2a is divided in 4 boxes of length 1/2 and Fig.
2b is divided in 16 boxes of length 1/4. All the boxes can be filled with points.

In Fig. 2a, d;=1/2 and N(d,)=4, and in Fig. 2b, d,=1/4 and N(d,)=186, so

D =[In N(d;) — In N(d;)}/In (dy/d;) =In (16/4)/In(4/2) =2

and the dimension is D = 2 for the two dimensions Euclidean space.

Figure 2a Figure 2b

In fractal geometry, the space cannot be filled with points. This is not an Euclidean
geometry. Let us consider the Sierpinski gasket at Figures 3ab. The space in Fig. 2a is
divided in 4 boxes of length 1/2 and Fig. 2b is divided in 16 boxes of length 1/4. All the
boxes cannot be filled with points. In Fig. 3a, d;=1/2 and N(d,)=3, and in Fig. 3b, d=1/4
and N(d,)=9, so D = [In N(d;) — In N(d;)}/In (d\/d;) =In (9/3)In(4/2) = In (3/2), and the
dimension is D = In (3/2) = 1.585 for this two dimensions Sierpinski fractal space. The
pattern is self-similar.

Figure 3a Figure 3b

There are a set of different fractals that can be generated with the same fractal dimension.
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Figure 3a’ Figure 3b’

For example, Fig. 3a' is the same as Fig. 3a but the Fig. 3b' is generated in permuting the
| first 2 lines and the last two columns of Fig. 3b. The fractal in Fig. 3ab has the same
‘ fractal dimension as Fig. 3a’b'. These fractals are self-similar and are also self-
symmetrical, but their symmetries are different.

So the fractal dimension does not take into account the self-symmetry property of
fractals. It could be of interest to define a symmetry dimension for self-similar
patterns in view of obtaining a higher order information about self-symmetry
properties of patterns.

Let us show an example of generation of fractals with the Multiple Copy Reduction
Machine.

With a computer, you make 3 copies of any initial pattern, like the picture of the cat
"Coquine” in Figure 4a, at a scale 1:2 and you paste the 3 copies in the Figure 4b with
the same symmetry as the Sierpinski generator. You make then 3 copies of this figure
4b with a scale 1:2 and you generate the Figure 4c. After several successive reductions
of scale by 1:2 with 3 copies, you finally obtain the Figure 4f. What is the surprise?

The picture of the cat disappears progressively (in fact this picture becomes so small
that one cannot see the cat) with the emergence of the Sierpinski gasket given by fractal
triangles. So the generative process destroys the local information given by the picture
to replace it by the a pattern, the information of which being the symmetry of the
generating process. This confirms the fact that the main information in such a fractal
process deals with the symmetry property of the generator. The information of the final
fractal pattern is embedded implicitly in the symmetry of the dynamics of the fractal
process independently of the initial condition given by any pattern.

With the same initial condition, different fractal patterns emerge depending on the

symmetry property of the generator.

Let us show that a set of patterns with the same fractal dimension can be generated with
different self-symmetries.
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3 Hyperincursive Automata

The general theory of hyperincursivity (Dubois & Resconi, 1992) deals with dynamical
systems with inclusive recursion called incursion.

In this framework, a new type of cellular automata, called hyperincursive automata, was
proposed from the fractal machine (Dubois, 1992; Dubois and Resconi, 1992).

Hyperincursive automata are defined by:

1. A frame.

2. A composition rule.

3. A path.

The path must be explicitly defined in order to compute the successive automata
states in an ordered way. With the same frame and the same composition rule,
many different processes can be generated in choosing different paths.
Two-dimensions space automata will be considered for explaining the importance of the
paths in the computation of hyperincursive automata.

A two-dimensions extension of eq. 2 is given by

X(i,j) = [ X(ij-1) + X(i-1,j) ] mod M with i=12,... for each j=1,2,... “)

The computation of this eq. 4 is made in considering a path given by the successive ordered
iterations of the automata lines by lines (index j) for each column (index 1).

With M=2, Figure 5a gives the simulation of eq. 4 with the conditions X(0,1)=1, X(i,1)=0
fori=1,2,3,... and X(0,j)=0 for j=2,3.... This is the Sierpinski gasket, a fractal pattern.

Another fractal pattern is generated with M=3, given in Figure 6a.

In choosing different paths for the iterations with the same frame and the same composition
rule, a lot of different fractal patterns can be generated from eq. 4. We can say that these
fractals obey a "fractal dimension invariance".

In defining ruled paths by n(i) and m(j), eq. 4 becomes

X[n@i),m(j)] = ( X[n(i),m(-1)] + X[n(i-1),m(j)] ) mod M (4a)

where n(i) and m(j) are new ordered paths as functions of i=1,2,... Iforeachj=12,...J.
This is a forward hyperincursive automaton.

A backward hyperincursive automaton is defined by
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X[n(i),m(j)] = ( X[n(i),m(+1)] + X[n(i+1),m(j)] ) mod M (4b)

where i = [I-1]-2,..,1 and j = J,J-1,J-2,....1, with final (X[n(I),m(J)]) and boundary
conditions. :

A lot of ordered paths exist. This paper will consider only a few ones in view of explaining
the new concept of "ruled path".

The sole condition is that the ruled paths generate patterns with the same fractal dimension.

Let us explain very simply some ruled paths.
3.1 Module 2 Self-Symmetrical Sierpinski Fractals (Dubois, 1996c)

Figures 5abcdefghi show 9 fractals belonging to the class of Sierpinski gasket generated
from egs. 4 with M=2.

These fractals are similar to fractals given by Peitgen et al (1992), with a recursive
generator obeying certain symmetries called the Multiple Copy Reduction Machine.

But our hyperincursive method is totally different. The computation starts with an initial
value equal to 1 for a first automaton, all the others being at 0. Then we apply the egs. 4 in
choosing different algorithms for defining the path [(n(i),m()].

PR
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4
g

Figures Sabedefghi
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The Sierpinski fractal Sa, is computed from eq. 4a, n(i)=1,1=1,2,3,... foreachm() =j,j =
1,2,3,..., that is to say lines by lines, from the left to the right, as already shown. This means
that the path index follows the successive order 1,2,3,4,5,6,7.8,...

A simple way to generate another path is to consider the recursive rule for n(i) and m(j):
starting with the sequence 1,2, you add 2 to obtain (3,4), and you put the inverse after to
obtain 1,2,4,3; then you repeat the procedure: you add 4 to obtain (5,6,8,7) and put the
inverse to obtain: n(i) = 1,2,4,3,7,8,6,5; and so on.

A recursive algorithm can perform this ordering.

In taking m(i) = n(i), the last fractal in Figure Si is obtained.

| The fractal Se in the middle in the Figure 5 is also symmetrical and was computed with the
backward eq. 4b.

‘ All the asymmetrical fractals are generated by one path n(i) or m(j) and the current index j
| or i, respectively.

‘ 3.1.1 Part of Basic Listing for a few Modulo 2 Self-symmetrical Fractals

program DDSierp A B
} xmin = 1 n(l)=1:n(2)=2
| xmax = size / 2 'size = 256 x1,.=2
ymin = 1
ymax = size / 2 For z = 1 To (Log(size) — Log(x1)) /
Log(2)-1
| For i =0 To size: For j = 0 To size For X=1ToxI
m(i, j)=0 n(x1 + X)=x1 +n(xl1 - X+1)
Next j: Next 1 Next
m(0, 1)=1 x1 =x1+x1
Next
For Y = ymin To ymax " second inverse permutation function
For X = xmin To xmax For i = 0 To xmax
mX, V)=mX-1,)+mX Y-1) pn@)=i
Mod 2 Next i
Next
Next
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' ‘different fractals C

For jj = 1 To ymax
For ii =1 To xmax

nl = (xmax - n(ii)+ 1) 'ii 'n(ii)

n2 = (ymax —n(ij)+ 1) 'j 'n(ij)

PSet (i1, jj), (m(nl, n2) * 6 + 9)
Next
Next

For jj =1 To ymax
For ii = 1 To xmax
nl =ii 'n(ii)
n2 = (ymax—n(jj)+ 1)
PSet (ii, jj), (m(nl, n2) * 6 + 9)
Next
Next

For jj = 1 To ymax
For ii = 1 To xmax
nl = n(ii)
n2 = (ymax —n(jj) + 1)
PSet (ii, jj), (m(n1, n2) * 6 + 9)
Next
Next

For jj =1 To ymax
Forii =1 To xmax
nl = n(ii)
n2 = n(jj)
PSet (ii, jj), (m(nl, n2) * 6 + 9)
Next
Next

For jj = 1 To ymax
Forii =1 To xmax
nl =ii
n2 = n(jj)
PSet (ii, jj), (m(n1,n2) * 6 + 9)
Next
Next
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For jj = 1 To ymax
Forii = 1 To xmax
nl = p(ii)
n2 = (ymax — p(jj) + 1)
PSet (ii, jj),(m(nl, n2) * 6 + 9)
Next
Next

Forjj =1 To ymax
For ii = 1 To xmax
nl = p(ii)
n2 = p(jj)
PSet (ii, jj),(m(nl, n2) * 6 + 9)
Next
Next

For jj =1 To ymax
For ii = 1 To xmax
nl=1i
n2 = pj)
PSet (ii, jj),(m(nl, n2) * 6 + 9)
Next
Next

For jj = 1 To ymax
Forii = 1 To xmax
nl=ii
n2=jj
PSet (i1, jj),(m(nl, n2) * 6 + 9)
Next
Next

For jj = 1 To ymax
For ii = 1 To xmax
nl = (ymax — n(n(ii)) + 1)
n2 = (ymax — n(jj) + 1)
PSet (ii, j),(m(nl, n2) * 6 + 9)
Next
Next




For jj = 1 To ymax
For ii = 1 To xmax
nl = (xmax —p(ii)+ 1) 'ii 'n(ii)
n2 = (ymax—p@j)+1) 'ii 'n(j)
PSet (ii, jj), (m(n1,n2) * 6 + 9)
Next
Next

For jj = 1 To ymax
Forii= 1 To xmax
nl = n(ymax + 1 — n(jj))
n2 = n(ii)
PSet (ii, jj),(m(nl, n2) * 6 + 9)
Next
Next

For jj = 1 To ymax
For ii = 1 To xmax
nl =ii 'n(ii)
n2 = (ymax — p(jj) + 1)
PSet (ii, jj), (m(nl, n2) * 6 + 9)
Next
Next

3.2 Modulo 3 Self-Symmetrical Sierpinski Fractals (Dubois, 1996¢)

Figures 6,7,8 show fractals generated with eqs. 4ab with M = 3.

The first fractal 6a was computed in from eq. 4a using the current indexes: n(i) = 1, i =
1.2.3,...and m(j) = j, j = 1,2,3,... as already shown.

Instead of considering sequences of length 2°, s = 1,2,3,... as in the preceding case (with
modulo 2), the sequences are now chosen with length 3°, s = 1,2,3,... due to the modulo 3.

But with such an odd modulo, this is not possible to create mirror symmetries as in the
preceding case.

Let us show the basic idea for the ordering of the path.
The first fractals 6a, 7a, 8a have current paths 1,2,3,4,5,6,7,8,9,...

The other fractals in Figures 6 use at least a path with such an ordering for n(i) or/and m(j):
1,2,3,6,5,4,7,89,...

The fractals in Figures 7 use a path: 1,2,3,6,5,4,98,7....
and the fractals in Figures 8, a path: 1,2,3,4,5,6,9,8,7....

Three types of inversion have been applied giving rise to different self-symmetries in the
fractals with the same fractal dimension. :
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Figures 6abedefghi

Figures 7abedefghi
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Figure 9: Enlargement of fractal 8e
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4 Multiple Reduction Copy Machine

Let us show the algorithms used by Peitgen et al, 1992.

In chapter 5.3 of "Chaos and fractals", Peitgen, Jirgen and Saupe use a "multiple reduction
copy machine" algorithm to create relatives of the Sierpinski gasket. This algorithm
proceeds in the following way:

Take a square picture containing any pattern.

Make three reduced copies of the picture on transparent foils with a linear reduction factor
of 2.

Assemble these three copies with one of an empty picture to form a new square of the same
size as the starting picture. During the assembly of the copies apply symmetry operations on
the copies, like rotations and reflections.

Copy one | Empty copy

+ Yaturn
% *

* Copy two | Copy three
+ Y2 tum + Z mirror

Result Original picture
This procedure is iterated to construct the fractal.
A similar procedure, but without the reduction step, was implemented on Boolean matrixes

while starting with a 1 x 1 matrix containing a single 1.
This gives for the simple Sierpinski gasket:

1000[0000
11000000

1010{0000

11110000

1ofoo] [toooltooo
11/ool [t100f1100

0] [Tojto] [1010ftO010
] (afi] (eafed] horafre ey

andsoon...
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For the particular case of the Sierpinski gasket itself, the operation is equivalent to an
iterated Kronecker product with the following matrix:

10
11

If we add a ¥4 turn rotation on cell (1,1) and an S mirror on cells (1,2) and (2,1) we obtain:

10110000
11100000
0010/0000O

0011/0000
04 T it T 1o
0100{0010

1100(001 1

A different fractal is generated for all different combinations of the symmetry operations
token 3 by 3 (Identity, 1/4 turn, %z tumn, 3% turn, horizontal mirror, vertical mirror, S mirror
and Z mirror). The whole set of 224 different fractals obtained is identical to the one

published by Peitgen, Jirgen and Saupe.

4.1 A Few Typical Fractals

- . ; “q! \
: : 1-07 5-07
" ‘ Yl Hy
:‘g"})’ dpnpk: '%L Py
3 Bt ’!) R EL ~
‘i}" - b : :
< R ) \ )y
Figure 10a:  upper-left = Y4 turn Figure 10b: upper-left = Z reflection

lower-left = copy
lower-right = S reflection

lower-left = copy
lower-right = S reflection
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Figure 10c: upper-left = /2 tum
lower-left = copy
lower-right = %% turn

Figure 10d: upper-left = % turn
lower-left = 2 turn
lower-right = % turn

%
%
: %g;e'#’? i
XA
o o
%#f&%" ? “fgﬁée
¢ ,,3 §‘,"§3 é}?

%
A § 4.

Fig. 10e: upper-left = vertical reflection
lower-left = horizontal reflection
lower-right = copy

Fig. 10f: upper-left = vertical reflection
lower-left = Z reflection
lower-right = copy
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Figure 10g: upper-left = % turn Figure 10h: upper-left = % turn

lower-left = %4 turn
lower-right = copy

lower-left = copy
lower-right = Z reflection

Figure 10i:  upper-left = % turn
lower-left = 2 turn
lower-right = Z reflection
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4.1.1 Algorithm in Pseudo-Basic Code

Main program
de sk ok ke deak ke ek ok

input "iterations" ' the number of iterations

input "q" ' symmetry, for cell x=1,y=1 S -
input "r" ' symmetry, for cell x=2,y=1 qr
input "s" ' symmetry, for cell x=1,y=2

""q,r,s" = order in list: ID, Q1, HA, Q3, VM, ZM, HM, SM
' see below the subroutines for performing symmetries

p=0 ‘ p takes 2 values 0 or 1
n=1-p 'n takes 2 values 0 or 1

' these values change at each iteration
I=1 ' size of source square matrix = 1 x 1
a=1
b=1

flp,a,b)=1 'f(p, a,b) is the source matrix
'f(n, a, b) is the target matrix
For iter = 1 To iterations
Fori=1Tol X
Forj=1Tol 'y

a=ib=j 'cell x=1,y=1

On q GoSub ID, Q1, HA, Q3, VM, ZM, HM, SM
if f{(n, a, b) = 1 then set pixel of coordinates (a,b)

else clear that pixel

a=l+ib=j ' cell x=2,y=1

Onr GoSub ID, Q1, HA, Q3, VM, ZM, HM, SM
if f(n, a, b) = 1 then set pixel of coordinates (a,b)

else clear that pixel
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a=ib=1+j ' cell x=1,y=2

On s GoSub ID, Q1, HA, Q3, VM, ZM, HM, SM
if f(n, a, b) = 1 then set pixel of coordinates (a,b)
else clear that pixel

a=l+i:b=1+j 'cell x=2,y=2
f(n,a,b)=0 "always 0
clear pixel of coordinates (a,b)

Next j
Next 1
p=n ' source matrix becomes target
n=1-p ' target matrix becomes source
1=1+1 ' double matrix size
Next iter

END

'Subroutines for performing the symmetries
e e ve g v e e v e e e Tk o o o Fe T vk Tk sk sk sk ok b sk sk sk sk s ok e sk e sk

ID: ! identity VM: ' vertical mirror
f(n,a,b)‘—‘f(p,l,j) f(n’aab):f(pal_’—l-i’j)
Return Return
Q1: ' quater turn clockwise IM: ! mirror with
f(n,a,b)=fp,1+1-j,1) orientation Z
Return f(n, a, b)=1(p, j, 1)

Return
HA: ! half turn HM: ' horizontal mirror
fin,a,b)=Rp,1+1-i,1+1-j) f(n,a,b)=f(p,i,1+1-j)
Return Return
Q3: ' 3 quater turn SM: ' mirror with orientation S
fin, a,b)=1f(p,j,1+1-1) fin,a,b)=Kp,1+1-j,1+1-i)

Return Return
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5 Conclusion

The main purpose of this paper was to generate self-symmetrical fractals based on the
Sierpinski Gasket. :

Two types of algorithms were used.

At one hand, hyperincursive automata, developped by D. M. Dubois, deal with automata
computations in a sequential order where the order in which the computations of the states
of the successive automata is ruled. This defines paths of propagation of activation of
automata. The state of an automaton depends on the states of other automata at any
distance.

At the other hand, the Multiple Copy Reduction Copy Machine as described by H.-O.
Peitgen, H. Jurgens and D. Saupe was used to generate self-symmetrical fractals with
rotations and mirrors rules.

The curious fact is that the Fractal, Information, Correlation, etc Dimensions at any order
are equal for fractals with uniform structure and does not depend of their symmetries. So a
lot of fractals with different self-symmetries are defined by the same fractal dimensions.

Symmetry is one of the most important property in any systems.

It would be of high interest to find a Symmetry Dimension to characterise fractals with
different self-symmetries.
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