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Abstrect

This paper shows that different algorithmic methods can generate self-symmetrical
Sierpinski fractals. A first category deals with a hyperincursive generator based on a
composition rule applied to a defined path in the frame. A second category of
algorithms is based on a recursive genentor obeyrng certain symmetries. This paper will
consider generalised Sierpinski fractals generated by modulo 2 and modulo 3. Even and
odd modulo give rise to very differenl properties of symmetry.
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I Introduction

Let us recall a simple generator of Sierpinski gasket based on cellular automata. A one-
dimensional network of cellular automata is represented by a vector of auûomata stat€s
starting with initial values at time t=0. A set of rules defines how the states change at wery
clock time. A simple rule consists of computing the value of the state of each auûomaton at
time t+l by the sum modulo M of itself and its left neighbour at the preceding time t, for
each clock time 1=0,1,2,3,etc. The following recusive automata exhibit fractal structrnes

x(n t+l) = [ x(n t) + X(n-lI) ] mod M (1)

with Ê0,12,... and n=12,..., starting with initial conditions X(n 0), r812,...at time t{ and
boundary conditions X(0,1) at each time step t=1,2,... , where mod M is the modulo M For
M=2, the fractal is the Sierpinski gæket given in Figure la- At each clock timg tlre order in
which the computations are performed is without imporbnce (patallel iterations).
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Figure la-b: Fractal Sierpinski gasket computed from recursive eq. I and incursive eq. 2.

Dubois (1992) proposed a new type of automata (the fractal machine) where the order in
which the computations are performed is to be rule.d. The following hyperincursive
automata give rise to fractals ofthe same class as Sierpinski gasket

X(4t+l) = [X(n,t)) + X(n-l,r+l)] mod M (2)

This equation is an incursio4 an inclusive or implicit recursion, because the state of an
auûomaton is a function of another automaton at the futwe time. This is computed in a
sequential order, in giving initial conditions X(n,O) and boundary conditions X(O,t+l) at the
future time t+1, for each time t4,12,... Figure lb gives the Sierpinski gasket from the
incursive eq. 2 with M=2. Such incursive automata will be called hyperincursive automata
because there are a lot of different paths which can be defined for computing successively
tlre automata, as this will be shown in this paper. lpt us notice that such hyperincunive
system sometimes may exhibit uncertainty and indecidability when the system defined
itself its boundary conditions in a selÊreferential rvay (Dubois, 1996).

This paper shows that different algorithmic methods can generate selÊsymmetrical
fractals. The Sierpinski fractal is taken as an example.
A first category deals with global permutations of rows of the fractal frame from
hyperincursive automata. Self-symmetrical Sierpinski fractals will be generated by
modulo 2 and 3. With an odd modulo 3, very different properties of symmetry, defined
in Dubois (1996c), exhibit original self-symmetrical fractals, never pres€nted in the
literature at our knowledge.
A second category of algorithms is based on local translations, permutations and
rotations inside the fractal frame. Peitgen etzl (1992) uses a rccunive generator obeying
cærtain symmetries. These fractals are based on modulo 2.
Let us first introduce the concept of fractal dimension related to self-symmetry.
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2 Fractal Dimensions and Self-Symmetry

B. B. Mandelbrot (1983) defined a fraotal dimension dealing with fractional dimension
instead of inæger dimension. There is no mone a characæristic length to define the scale
of the system. There is an scale invariance: in looking atafractal pattern at different
scales, a similar or affine pafiem appears. The fractal dimensions can be computed by
box courting Seitgen etal,lW2) from the relation

D = ltn N(fur) - ln N({)iln (d/d*r) (3)

wh€r€ N(q) re,prcsents the number ofboxes, of length Ç containing at least one automaton
ar $aæ dif€rerf of 0, ûo coverlhe pafiern, in considering different scales n.
This ftactal dimension can be relatedto the measure of information of Shannon.
The boxcoumiqand infonnati<n are ernbeddod intlæ Rényi qfr order dimensions

Do=I{sXn(l/s)

wlrcre

(3a)

I{s)=(1(1$Intpkq (3b)

is tbe qù order Rinryi infomrcion In eqs. 3ab, p. are ûrs aùtomata state probabilities in the
kùbox oflengù sb in assuming thattbey srmr rryto 1, E p* = 1.
F u q - 0

Io(s):lnNG) (3c)

uùæ N(s) is tb nrmber of mr empÉy boxes of lirear size s. So Do = D tk usual box
counting fractal dimension
Forq= 1

I l (s)=-:nlnn (3d)

is ûe Sbamon informstioq and Dr is the informatim dimsion.
For q - 2, D is the correlation dimension, eûc. h general Dn 2 Do for any pcq. For fractals
with uoifom stnrshrre, like those considered in this paper, all dimensions D, have the same
ralæ.

Very curiouly, the fracal dimension is not dependent on the symmetry properties of the
ûac6l pdems. So, mmyditrered fuÉI pficms wift ôe sarne fractal dimension can be
ggprated with ditrerent qmmeûies.
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Euclidean geomety deals with integer space-time dimensions. If all the points of a space
can be filted witb pofutûs, fbe fracfal dimensidr is ûe Ewlideal dim€nsidr Fl &r a lirB,
È2 for a surface, ad È3 fo a voltrme. Irt us consider ee fo|lo$,ing Eudifu ryace of
dimension 2 in Fip 2 ab. The space in Fig.2a is divided in 4 boxes of length 1/2 and Fig.
2b is divided in 16 bores of length 1.14. Nl the boxes can be filled with points.
In Fig. 2a, d,çl/) and N(d1p4, and in Fig. 2b, dz=l/4 and N(d2pl6, so
p = [n N(d) - fn N(dJ]/ln (ùldù =ln(l6l4y|m{4n) = 2
and the dimension is D : 2 for the two dimensions Euclidean space.

Figure 2a Figure 2b

In fractal geometry, the space cannot be filled with points. This is not an Erælidem
geometry. Iæt us consider the Sierpinski gasket at Figures 3ab. The space in Fig 2a is
divided in 4 boxes of length ID arfr Fig. 2b is divided in 16 boxes of length 1/4. All the
boxes cannot be filld rvith pofutts. In Fig. 3a" dt=lD and N(drF3, and in Fig 3b, drl4
and N(dzF9, so D = tln N(dt - ln N(dr)l4n (dt/d,r) =ln (9BYln{4/2) =ln (3/2), and ûe
dimension is D : ln (312): 1.585 for this two dimensions Sierpinski fractal space. The
pattern is self-similar.
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Figue 3a Figue 3b

Tlrere axe a set ofdifferent fiactals that can be gpnereted with the same fractal dimension
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Figure 3a Figure 3b'

For example, Fig. 3a is the same as Fig. 3a but the Fig. 3b' is generated in permuting the
first 2 lines ard the last two columns of Fig. 3b. The fractal in Fig. 3ab has the same
fractal dimension as Fig. 3ab'. These fractals are selÊsimilar and are also self-
symmetrical, but their symmetries are differenl.

So the fractel dimension does not take into eccount the self-symmetry property of
fractels. It could be of interest to deline t symmetry dimension for self-siuihr
patterns in view of obtaining a higher order information about self-cymmetry
properties of patterns.

Iæt us show an example of generation of fractals with the Multiple Copy Reduotion
Machine.

With a computer, you make 3 copies of any initial pattern, like the picture of the cat
"Coquine" in Figure 4a, at a scale l:2 and you paste the 3 copies in the Figure 4b with
the same symmetry as the Sierpinski generator. You make then 3 copies of this figure
4b with a scale l:2 and you generate the Figure 4c. After several successive reductions
of scale by I :2 with 3 copies, you finally obtain the Figure 4f. What is the surprise? '
The picture of the cat disappears progressively (in fact this picture becomes so small
that one cannot see the cat) with the emergence of the Sierpinski gasket given by fractal
triangles. So the generative process destroys the local information given by the picture
to replace it by the a pattern" the information of which being the symmetry of the
generating process. This confitms the fact that the main information in such a fractal
process deals with the symmetry.property of the generator. The information of the.final
ftac,tal pattern is embedded implicitly in the symmetry of the dynamics of the ftactal
process independently ofthe initial condition given by any pattern.
With the same initial condition, different fractal patterns emerge depending on the
symmetry propeay of the generator.

[,et ts show rhâÎ a set of @tems wfth the same fractal dimension can be generafed with
difflerent selGwmmeEies.
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3 llyperincursive Automata

The general theory of hyperincursivity (Dubois & Resconi, 1992) deals with dynamical
systems with inclusive recursion called incursion.
In this frameworlq a new type of cellular automal4 called hyperincursive automata, was
proposed from the fracAl machine (Dubois, 1992; Dubois and Resconi, 1992).

Hyperincursive automal& are defined by:
l. A frarne.
2. A composition rule.
3. Apath.

The path must be explicitly defined in order to compute the successive rutomrta
rtrtes in en ordercd wey. With tùe seme freme end the srme composition rule,
many different proce$rcs can be generated in choosing different paths.

Two-dimensions ryace antomara will be considered for explaining tlre importance of the
paths in the comprtation ofhyperincursive auûomata.
A twodimensions er<tension of eq. 2 is given by

{ij)= tX(ij-l)+X(i-lj) I modM with i=12,... foreachj=l),... (4)

The comprtation ofthis eq. 4 is made in considering a path given by the successivc ordered
iter*ions ofthe automata lines by lfurs (indexj) for each colurnn (index i).

With M=2, Figue 5a gives the simulation of eq. 4 with the conditions X(0,1F1, X(i,l}{
fotÈl).,3,... ardX0i}{ for j=23,... Thisisthe Sierpinski gasket, afractal patæm.

Anotlpr fracAl pttem is çnenafed with lvÊ3, given in Figure 6a

In choosingdifferent paths forthe iærations with the same frame andthe same composition
rulg a lot of different frachl pattems can be genoated from eq. 4. We can say that these
frac'tals obey a "ûa@l dime,nsion inrariance'.

h defining ruled paths by n(i) and m(j), eq. 4 becomes

xfiiln{i)l=(xt(rF4t-ll+xffi-l}m0)l)modM (4a)

where n(i) and mO are new ordered poths as fiurctions of i= 1,2,..J for each j = l2-..J.
This is a fuumrd bû'p€dmursive ar$omdon

A backwand hyperincursive auûomaûon is definedby
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X[n(i),m() =(X[n(i),m(i+1)]+X[n(i+t)rn0)] )modM (4b)

where i = IJ-I,I-2,...,1 and j = $-1H,...,1, with final CXtn(I)/n(J)D and boundary
conditions.

A lot of ordered paths exist. This paper will consider only a few ones in view of explaining
the new concept of"ruled pathn.

The sole condition is thatthe ruled paths generôtÊ pattems withtlrc same fractal dimcrsion.

Let us explain very simply some ruled paths.

3.1 Modulo 2 Self-Symmetrical Sierpinski Fractals (Dubois, 1996c)

Figures 5abcdefghi show 9 frætals belonging to the class of Sierpinski gasket generdsd
from eqs. 4 wilh M=2.

These fi:actals are similar to fractals given by Peitgen et al (1992), with a recursive
generator oqing certain symmeties called the Multiple Copy Reduction N{achine.

But our hyperincursive method is totally difierent The comprsation sbrts with an initial
value equal to I for a first automaton, all the othen being at 0. Th€n we apply the eqs. 4 in
clroosing differerft algorithms for deftring the path (n(i)p(i[.

W EF-*
F* &h
Fh,Fh, ,frF Fs{
Eryr[F rffi E"rtra
l-F LE es F,t Ê'l
LE ^*[, H,rx

to2



The Sierpinski fractal 5a, is computed from eq. 44, n(i) = i, i = 1,2,3,... for each m(i) = j, j =
1,2,3,..., that is to say lines by lines, from the left to the right, as already shown. This means
that the path index follows the successive order 1,2,3,4,5,6,'1,8,...

A simple lvay ûo generate another path is to consider the recursive mle for n(i) and mO:
starting with the sequence 1,2, you add,2 to obtain (3,4), and you put the inverse after to
obtain 1,2,4); then you repeat the procedure: you add 4 to obtain (5,6,8,7) and put the
inverse to obtain: n(i) = 1,2,4,3,7,8,615; and so on.

A recursive algorithm can perform this ordering.

In taking m(i) = 4i;, the last fractal in Figure 5i is obtained.

The fractal 5e in the middle in the Figure 5 is also symmetrical and was computed with the
backward eq. 4b.

All the asymmetrical fractals are generated by one path n(i) or m(f ) and the current index j
or i, respectively.

3. l.l Part of Basic Listing for a few Modulo 2 Self-symmetrical Fractals

program DDSierp A
xmin= I
xmax= sizpl2 'sizs=256

ymin= I

/ûtax=siznl2

For i = 0 To size: Forj = 0 To size
m(i ,  j )=0

Next j: Next i
m ( 0 , 1 ) =  I

For Y = ymin To ymax
ForX = xminTo xmax

m(X, Y) = (m(X - 1, Y) + m()f, Y - 1)
Mod2

Next
Next

B
n ( 1 ) =  1 1 n { 2 ) = 2
x l  = 2

Forz= I  To( tog(s ize) -  ln (x l ) ) /
tneQ)- t

ForX= l  Toxl
n (x l  +X)=x l  +n(x l  -X+ l )

Next
x l  = x l  + x l

Next
' second inverse permutation function
For i=0Toxmax

(n(i))=i
Next i
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' 'different fractals C

Fuij= l ToYmor
Forii= I Toxma,x

nl =(rnax-n(ii)+ l) ' i i 'n(ii)

n2=6rmax-n(ii)+ l) ' i j 'n(ij)

PSet (it,ii), (m(nl, n2) * 6 + 9)
Next

Next

Forj j=lToYmax
Forii= I Toxmru<

nl = ii 'n(ii)

n2=(5rma:<-n$)+ l )
PSet (ii,ii), (m(nl, n2) * 6 + 9)

Next
Next

Forii= I ToYmax
' For ii = I To xmax

nl = n(ii)
n2=6/max-ng)+ l )
PSet (ii,ii), (m(nl, n2) * 6 + 9)

Next
Next

Forjj= I ToYmo<
Forii= I Toxmax

n1=( i i )
n2=(ii)
PSet (ii,ii), (m(nl, n2) * 6 + 9)

Next
Next

Forii = I ToYnnx
Forii= I Toxmor

n l  = i i
n2 = n0i)
PSet (ii,ii), (m(nl, n2) * 6 + 9)

Next
Next

Fuji= I Toyma,r
Forii= I Toxma,x

nl = p(ii)
n2=(yma:<-pûi)+l)
PSet (ii, ji),(m(nl, n2) * 6 + 9)

Next
Next

Forfi= I Toymax
Forii= I Toxma:<

n1 = p(ii)
n2 = p(ii)
PSet (ii, jj),(m(nl, n2) * 6 + 9)

Next
Next

Forj j=lToymax
For ii = I To lgrax

n l = i i
n2= p0)
PSet (ii, ji),(m(nl, n2) * 6 + 9)

Next
Next

Forii= I Toymax
For ii = I To xmax

n l = i i
n2 =ii
PSet (ii,ii),(m(nl, n2) t 6 + 9)

Next
Next

Forji= I To ymax
Forii= I Toxma,x

nl -(yma:r-n@ii))+ l)
n2=6/mal(-n( i i )+l)
PSet (ii,iiXm(nl, n2) | 6 + 9)

Next
Next
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Forjj = I Toyma,x
Forii= l Toxmor

1l =(nra:r-p(ii)+ l) ' i i 'n(ii)

n2=(yma,r-p(iD+ 1) 'j j 'n(it)

PSet (ii,ii), @(n1, n2) * 6 + 9)
Ne$

Nsrd

Forji= I Toyma:i
Fori i=lTorcral t

nl = ii 'n(ii)

n2=$ma:(-p$)+ l)
PSet (ilii), (m(nl, n2) + 6 + 9)

Ne:s
Ne:É

Forlf = I Toyma"x
Forii= 1 To xna:r

nl =n(ymo<+ I -(ii)
n2 = n(ii)
PS€t (ii, ii),(m(nl, n2) * 6 + 9)

Next
Next

3.2 Modulo 3 Self-symmetrical Sierpinski Fractals @ubois, 1996c)

Figu€s 6Z3 show fracals gen€xat€d with eqs. 4ab with M = 3'

ThÊ fr$ ûa.fal 6e was compled in from sq. 4a using tIæ cunent indexes: n(i) = i, i =
123,...and m(i) = j, j = 123,... as already shovm.
Inst€ad of considering sequ€nces of length l, s = 12,3,...as in the preceding case (with
modulo 2), the sequences are now chosen with length 3", s = 1,2,3,... due to the modulo 3.

B|Itwith sucf, en odd Eodrblbh bnoÛpoËciHeÛocrealemimrsynmefrier æ in ôe
preceding case.

lrt us shorv tbe basic i&a for the ordering ofthÊ path

The first frâctals 6c7q8a have cunent WttÊ 1231,5,6,7,89,.-.

The d€r factals in Figures 6 use al least a path with such an ordering for (i) orland mO:
123,654,7,8,9,...

The fra.tals in Figur€s 7 use a path: 123,6,&49ÂJ*
ard the fracltrls in Figures 8, a path: 12,3A,5,69N,-..

îkee types of inveisim have been applied gving rise to ditrererrt setÊslarmcfries in tlre
ûactals withthe same frac"tal dimension
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4 Multiple Reduction Copy Machine

læt us stnw the algorithms used by Pei4en et al,|992.
In chaper 5.3 of "Chaos and fractals", Peitgeru Jiirgen alrd Saupe use a "multiple reduction
copy machine" algorithm to create relatives of the Sierpinski gaskel. This algorithm
proceeds in the following way:
Take a square picture containing any paftem.
lvlake three reduced copies of the picture on transprent foils with a linear reduction factor
of %.
Assemble these ttnee copies with one of an empty picture to form a new square of the same
size as the starting picture. During the assembly of the copies apply symmetry operations on
the copies, like mtations and reflections.

Copyone
+%twn

tF

Empûy coJty

* Copynvo
+ %tum

rt

Copy three
+Zmirmr

Result

This procedure is iterated to consûuct the fractal.

A similar procedure, but without the rpduction step, was implemented on Boolean matrixes
while starting with a I x I mafrix containing a single L
This gives forthe simple Sierpimki gasket:

tr olo ol
LUI-q--q.i

trffitt3

Origrnal picture

1000
l r00
l0 t0
I  , l  I  , ,1

0000
0000
0000
0000

1000
1100
l0 l 0
I  t r  t

1000
I t 00
1010
r r1 l

and so on ...
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For the particular case ofthe Sierpinski gasket itself, the operation is equivalent to an
iterated Krmecker @uct wift drc following matix:

1 0
l l

Ifwe add a % tum rotation on cell (1,1) and an S mirror on cells (1,2) andQ,\ we obtain:

ffiffiffi

'fu, 0 ',,r*.:,
'il:1':Ë ...;tu 0
0 0 ,jl,i,0
0 0 ''''P"t11,

0000
0000
0000
0000

;ûirigrj0 :Ë
o iËffil'i
-0..,r*',0 o
$lii$:.0 0

iI." I ,ili
il. rit' 0
g  g  1 [ . r 0
o o l {

A different fractal is gwerated for all different combinations of the symmety operations
tok€n 3 by 3 (Ifuitif, U4 tln\ %turln,%trfin, hodzontal minor, vertical mirror, S mirror
and Z minor). The q/hole ggt of 224 diff€rent fractals obteined is identical ûo the one
pùlished by Peitgpn, Jfrgen and Saupe.

4.1 Â Few Typicel f,'rcctfllr

Figure 1(h: upper-l€ft: 7.r firm
lower-left: copy
lower-right : S rcflection

Figure 10b: upperJofr :Zreflection
lowerJefr: copy
lower-right : S reflection
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Figure l0c: upper-left : Yzturn
lowerJeft: copy
lower-right: tA trurn

Figure l{td: upper-left: %ttrn
lower-left:%atrn
lower-right :%twn

Fig. l&: upper-left: vertical reflection
lower-left : horizontal reflection
lower-right = copy

Fig. 10f: upper-left: vertical reflection
lowerleft:Z reflection
lower-right: copy



3- 05"H-

Figure l0g: upperJeft :3/attxn

lowerJeft: % turn
lower-right: copy

*..fstr
. ré_{ ' - . r_t  

3-  25
a frt flr- tqr

-ffi

s ' - s '

'cF*r.*# *#'TFT&rTfu

ffi

Figure 10h: upper-left: t/rtum

lowerleft: copy
lower-right : Z reflection

Figure 10i: upper-left :%turn
lower-left : %turn
lower-right : Z reflætion



4. 1. 1 Algorithm in Pseudo'Basic Code

I

Main progran

input "iterations" 'the number of iterations
input "q" 'symmetry, for cell x:1,p1 s -
input nr" 's5rmmetry, for oell r2,y:l q r
input "s" 'symmetry, for cell x:l,y:2

"'q,r,t': order in list: ID, Ql, FIA, Q3, VM, ZM HM, SM
' see below the subroutines for performing symmetries

p :0
n : l - p

' p takes 2 values 0 or I
'n takes 2 values 0 or I
'these values change at each iteration

I : I 'size of source square matrix = I x 1

a = l
b =  I
(p, q b): I '(p, a, b) is the source matrix

'(n, a' b) is the target matrix

For iter: I To iterations

F o r i :  I  T o l

F o r j : l T o l ' y

a : i : b - - j 'cell x=1,51
OnqGoSub D, Ql, HA, Q3, Vlv\ZM, F{À4 SM
if (n, a, b): I then set pixel ofcoordinates (ab)
else clear that pixel

a : l + i : b : j 'cell x:2,y=1
On r GoSub ID, Ql, HA, Q3, VM.ZM, HM, SM
if (n, a" b): I then set pixel of coordinates (a,b)
else clear that pixel

rt2



a : i : b : l + j 'cell x:1,52
On s GoSubID, Ql, HA, Q3, VlvI"Zlvl, HM, SM
if f(n, a, b): I then set pixel of coordinates (a,b)
else clear that pixel

a: I  + i :  b :  I  + j '  cel l  x:2,y:2
f(n, a b):0 'always 0
clear pixel ofcoordinates (a,b)

'source matrix becomes target
'larget matrix becomes source
'double matrix size

Next j

Next i

p : n
n : 1 - p
l : l + l

Next iter

END

'Subroutines for performing the symmetries
************tl******rt*****************

ID; 'identity

f(+ a t;: (p, i, j)
Retum

Qt: 'queter turr clockrvise
( n , a , b ) : ( p , l +  I  - j , i )
RehJm

[A: 'half tun
(r1 a, b):(p, I + I - i, I + I -j)

Retum

Q3; '3 quater turn
(n ,a ,b ) : f (p , j , I+  I  - i )
Retum

VM:
( n , a b ) : ( p , l + t
Retum

ZùIz
orientation Z
(n, a b): {p, j, i)
Retum

HM:

'vertical mirror
- i , j )

I mirror with

' horizontal mirror
( r ! a , b ) = f ( p , i , l + 1 - j )
Return

SM: ' nirror with orientation S
f(n, a,b)=(p, l+ I  - j ,  I  + I  -  i )
Retunr
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5 Conclusion

The main purpose of this paper was to generdte selÊsymmetical fractals based on the
Sierpinski Gasket.

Two types ofalgorithms were used

At one hand, hyperincunive automata, developped by D. M Drboiq deal with automata
compr&rtions in a sequential order wlrere the order in which the compfatims oftlre sbæs
ofthe successive auûomata is ruled This defines paths ofpropagation ofactivation of
automata. The state of an automaton d€pends on the states of oÊlu arÉomata at afiy
distance.

At the other hand, the Multiple Copy Reduction Copy lvfachine as described by H.O.
Peitgerl H. Jiirgens and D. Saupe was used ûo generaûe selÊsymmetrical fractals with
rotations and mirrors rules.

The curious fact is tlnt the Fractal, Informatioq Conelation, etc Dimensions at any order
are equal for fractals with uniform strrrture and does not depend oftheir symmaries. So a
lot of fractals with different selÊsymmeties are defined by the same fracal dimensions.

Symmetry is on€ofthe lnæt importrnt property in myq/sûens.

It would be of high interest to find a Symmetry Dimension to characterise fractals with
diffcrent selÊsymmetries.
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