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Abstract 
Ndarcel Proust

In a previous communication [1], G. Nnenr (2001) has proposed a general definition of
infrnite momentum frames (IMF) from a mathematical point of view which allows to
consider nvIF with any number of dimensions.
In the present communication, we try to build a new concept of space time with IMF.
For this purpose, we study some assumptions about infinite momentum frames having n
dimensions (IMF-n): a) usual referential frames can be deduced from IMF-n (with n )
4), b) IMF basis vectors can be associated to spinors. We also illustrate some particular
IMF-n instances with the following examples: definition of spinors in an IMF-2,
expression in an IMF-2 of the longitudinal Doppler effect including the case of
tachyons, and application of IMF-6 to the < 6 dimensional universe > [2] which has been
defined by G. Nmenr (2000).
Keywords: Infinite Momentum Frame, IMF, Spinor, Tachyon, Doppler

I Introduction

1.1 Ilistory of Inlinite Momentum Frames
Infinite momentum frames (IMF) have been first introduced in the theory of partons

[3] by J. KocLrr andL. Sussxnro (1973) as ordinary referential frames (ORF) moving
with almost the light velocity. The system of two light cone coordinates (IMF-2) has
been later redeveloped by R. Drmæn (1984, 1990) on the basis of complex rotations
group in a pseudo Euclidean space [4,5]. R. Dtmæn and G. Nnenr (19g6) have
proposed a generalization [6] to a four dimensional infinite momentum ftame (IMF-4).

In a previous communication [l], G. Nmanr (2001) has criticized the definitions of
INtr proposed by these authors and he has proposed a new definition of infinite
momentum frames, having any number of dimensions (IMF-n) and based on vectors
having a null geodesic, i.e. vectors which are isotropic in the sense of mathematics.
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1.2 rtrhy to use Infinite Momentum Frames ?

Since they have been introduced [3] bv J. Kocur and L. Sussxno (1973), infinite
momentum frames have been used again in the theory of partons [7] by Matthias
BuRr.lnRor (2000)

lnl'inite momentum fiames have been also used in the calculation of semileptonic
decays of heavy Lambda baryons [8] by Barbara KoMc, Jurgen G. Koru.lsn, Michael
l(nql,trn and Peter KRoLL (1997), rn the quark-parton model of the proton spin
structure [9] by Petr ZAvADA (1997). in the quark distributions of the nucleon fl01 by
D.l. Dr,q.xoNrov, V. Yu Pernov, P.V. Ponvlrse. M.V. Polvarov and C. WEIss
(1997). in the type-llB string theory [ l] bv Pei Ming HO and Yong Shi WU (1998), in
the sine-Gordon model [2] by Silvio P.arr-ue and Predrag PnEsrrn (1999), in string
and field theory [3] b"v Charles B. THonN (1999;, in the type-llA string perturbation
theory [1a] by G. GrucNeNI, P. Oru-AND, L.D. P,cNIex and G.W. SetvcNonr(2000), in
the scalar quantum field theory' [5] by Joel S. RozowsKY and Charles B. THonN
(2000t. and tbr the quantization on a spacelike surtàce close to a light front in the
perturbative scalar field theory [6] b1" A. H.{RINDRANATH, L. MARTINovIC and J.P.
Vnnv 12000).

1.3 Trying to Build a new Concept of Space Time

The usual concept of space time is not obvious to me, and in the present
communication. I am trying to build a ne$ concepl of space time.

1.3.1 Is Space Time Just a Primary Container l)

Space tirne is most olTen considered as an invariable container of matter and energy,
but the general theory of Relativitl' has shou'n thal space has a curvature which depends
on all the masses which it contains. ln the Big Bang theory, space time seems to
"appear" with the energy- of the universe It suggests that both matter energy and space
time are complementary".

In cosmology, the universe expansion of both matter cnerg)- and space time is usually
related to the / : 0 time of the universe, i.e. to the relativist singularity, Although it may
be considered as an objection to the standard model of cosmology, a possible alternative
might be that the usual space time concept is not pertinent for cosmology. So it suggests
that a new concept ofspace time should be proposed in relation to the light cone.

1.3.2 Heuristic Considerations About Spinors and Space Time

In a previous communication [2] a < 6 dimensional universe > U6 has been defined
by G. Nmenr (2000) to build a relativistic model of particle antiparticle pair with
relativist E.P.R. correlations. He has shown that the behavior of a pair of boson

it is a non relaûlist interpretâtion ofquntum field thanl

in the smse of N. Bohr's Complsnmtan' Principle.
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antiboson can be represented, with their non local correlations,
Krnnt, GotooN and Focr equation in U6 (eq. 115 in ref 2):

ç'(to + R"\-!-v = -2r'w (p.u=r.z..r,r.s.o)
U d x p ' '

where

GtI - Gru (p.,.=l.u.s.r.s.o)

with the following

( l )

(2)
is the diagonal of the metrics tensor of U6 which is equal to the signature (+++--- )
in the framework of the special theory of Relativity, where Y are the coordinates in U6,
where R/ is the directions bivector (eq. 65-68 in ref. 2) of the pair of bosons in U6, and
Tthe usual KLEIN, Gonnon and Focr constant.

He has also shown that the behavior of a pair of fermion antifermion can also be
represented, with their non local correlaûons, with the following DRAC equation in U6
(eq. 146 in ref. 2):

(-ro ptçut '  +i f  Y\J, t '4=, +2xry =g (r=r. : . . r . . r .s.a) (3)\  /  l "  â X , ' ,  
' -

wherc f , IP are the Dirac matrix in U6, (eq. 142. 143 in ref. 2) and rvhere .JP" is a
"square root" of the metrics tensor (T'' as shorvn belorv (eq. 145 in ref. 2):

(jt"

The possibilitv of a relativistic representation of the non local correlations within a
pair of fermion antifermion shows that the localization in space time is not a primary
requirement. B.J. Flrrv (2000) has recalled [ 7] that "there is no necessity to start an
explanation of quantum processes in space time". Moreover the introduction of a
"square root" of the metrics tensor, and the aspect of "lP" with imaginary numbers has
suggested to me that the primary concept, before the locality, should be built with
spinors.

However, in relativist quantum mechanics there is a spinor representation of
4-vectors, and thus a spinor may represent a position in space time.

1.3.3 Study of Some Assumptions About IMF
We think that it is too early to give a pertinent nerv definition of space time. Thus

before proposing a new postulate of physics, we are studying some assumptions
conceming light hypercone coordinates having n dimensions, i.e. infinite momentum
frames (lMF-n).
In the present communication, we study the following assumptions:
o Infinite momentum frames having 4 dimensions (lMF4) can be defined from usual

referential frames or tachyonic referential frames (see section 2.2),

(4)

[ r  o  o i )  r )  , l  l - r  , i  o  t ,  ,  o l
f , , l  o  o  o , , l  l o r o o o o l

_ 1 , )  ô  l  i l  i l  0  |  J t l t  _ l o  r ,  |  0  o  0 l- l û  
o  , r  - 1  i r  e  |  "  

- l o  
'  '  r  r r  r r i

l 0  0  ( )  o  - l  i , )  
|  I 0  0  0  o  t  0 l

L o  o  o  o  o  - l l  L o o o o o r j
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. usual pseudo Euclidean referential frames can be deduced from an IMF-n having n >

4 dimensions (see section 2.3) and thus
r an IMF-n having n > 4 dimensions may be considered as a generator of usual pseudo

Euclidean referential frames (see section 2-3).
r The light hypercone may be built from spinors, because all basis vectors of an IMF-n

can be associated to spinors (see section 2.4).
To illustrate these assumptions, some applications of particular instances of IMF-n have
been presented:
. definition of spinors in an IMF-2 (see section 3.2.2),
. application of IMF-2 to the longitudinal Doppler effect (see section 3.3), including

the case of tachyons (see section 3.3.2),
. application of IMF-6 to the < 6 dimensional universe > (see section 4) which has

been defined in a previous communication [2] by G. Nnenr (2000),
. discussion of some problems of the space time duality in IMF-6 (see section 4.3).

2 The Light Cone âs a new Foundation of Physical Space Time

2.1 A General Theory of Infinite Momentum Frames

2.1.1 General Definition of an Infinite Momentum Frame

In a previous communication [1] we have proposed the following definition of an
infinite momentuin frame:
< An infinite momentum frame is a referential frame generated by any number of
isotropic basis vectors >.
Imoortant remark: We use the word "isotropic" in the sense of mathematics. Isotropic
vectors are vectors which have a null geodesic but non zero components.

The most general equation of a light cone with n dimensions, is
ds2  =0 (s)

and we may imagine a hypercone having more than 4 dimensions. The left hand side of
the equation 5 is a quadratic form, so its solutions are vectors with complex components
or vectors with real components if the metrics sigrrature contains different signs (i.e. +

and -). The pseudo Euclidean space (one minus sigrr) is a particular case.
Because all the basis vectors e, of an IMF are isofropic, i.e. have a null geodesic,

the metrics tensor 4 ou fu a null diagonal:

t r . E r = e w - - O  ( r = 0 , 1 , . . . r l )  ( 6 )

so all IMF coordinate axis are isotropic, and we may say that an IMF is an < isotropic
referential frame >. Consequently a relativist interval in an IMF canbr- expressed as

f ls2  =q*d( td ( '  (p* ,  p ,v=0,1 , . . .n )

whére (P are IMF coordinates, and it is equivalent to

4r2  =(n , , ,+  r7* \a6oa6 '  (p . ,  p ,v=o '1 , . . .n )

(7)
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Here, in equation 8, we can see the two particular types of IMF defined below.

2.1.2 Degeneraûed IMF
If the IMF metrics tensor 4,, is antisymetric, we have

4 p, = -Irp 
\P,, = 0'1,. ' .n) (9)

we deduce from equation 8 that the relativist interval is always null:

ds2  =0 (10)
In such a case all vectors have a null geodesic, and we say that the IMF is degenerated.

2.1.3 Perfectly Isotropic IMF
If the IMF metrics tensor 4,, is symetric, i.e.

Il p, = 4 r,1, (p,U = 0,1,...n) (l t)

the equation 8 simplifies into:
ds2  =2q, ,dqpd6 '  (p . ,  p ,v=0,1 , . . .n )  < rz l

In such a case we may say that the IMF is a < perfectly isotropic referential frame >.

2,2 An IMF Built From a Pseudo Euclidean Referential Frame
Let us consider a pseudo Euclidean referential frame with z dimensions. For

example, we may consider either an ordinary referential frame (ORF4) with the real
metrics gr" having the signature (+---) or atachyonic referential frame (TRFa)

with the real metrics Air" [l9] having the signature (-+++ ) . Anyway the equation 7 of

the light cone can be expressed in the given referential frame as
ds' = gu,ùrdx" =0 (p,, = 0,1,.. .n) (13)

and the equation 13 allows ûo define vectors of the light cone, which are the basis vector
of an IMF. Moreover an IMF can be deduced from a pseudo Euclidean referential frame
with a linear transformation of the coordinates, such as

x'  = al6 '  (p,u = 0,1,. . .n) (14)

where al are constants. Thus the IMF metrics can be classically deduced from the
pseudo Euclidean metrics with the equation

Qp, = gra)aT (1,P'v 'P=0'1," 'n) <tt l
In the framework of the special theory of Relativity, using the not null values of go,

for an ORF-4 or a TRF-4, we would have the particular equations:

4o, = 8aalaf; =0 (X,P=0,1,23)

4 p, = Eaaf;ai (, * 
" 

1,P,v = 0,1,2,3)
which can be developped as

("'r\' - ("',\' - (",,\' - (oi)' = o (p = 0,t2,3\

(16)

(r7)

(18)
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eo, ,= t (a ' )ao , -  o tuo t , -  o ro l . ' r ) r i )  (p*  u  p 'v=0,7 ,2) ) ( le)

where the sign + 15 + for an ORF-4 and - for a TRF-4. Some examples of IMF deduced
from an ORf'-4 or a TRF-4 have already been given, with 2 dimensions [4,5] and with 4
dimensions [6].

The given pseudo Euclidean referential frame and the deduced IMF have the same
number of dimensions, and so they may be considered as equivalent for the description
ofphysics.

2.3 An IMF as a Generator of tlsual Referential Frames

Firstly let us consider a light hypercone which generates an IMF-n of n dimensions
(rve rnay imagine that it has more than 4 dimensions) and let us name f its coordinates.

Secondly let us introduce a natural observer: he has a clock in his pocket which
implies a time anow, he also has a concept of a 3 dimensional space which implies a
local Euclidean geometry, and the relativist requirement implies a 4 dimensional
pseudo Euclidean metrics, i.e. an ordinary referential frame (ORF4).

From such a point of view, the 4 dimensional pseudo Euclidean referential frame
(ORF-4) emerges from the introduction of a natural observer within an IMF-n having 4

or more dimensions. A pseudo Euclidean referential frame can be deduced from the
given IMF-n with the linear transformation of the coordinates which is expressed as

xu = nl. É' {p = 0'1,2'3 v = 0,1...n , > 3) (20)

where the matrix of the tensor a;1 is not a square matrix but a rectansle. The IMF

metrics can be related to the pseudo Euclidean metrics with the following equation

4 p,.= g;.pa' , ,ai .  ( l ,p= 0' l '2.3 p.v = 0.1" 'n n'3) Ql)

rvhere the matrix of the tensorS 4 p,, gu,.are always square matrix.

The problem of the emergence of a 4 dimensional pseudo Euclidean referential

frame (ORF-4) from a given IMF-n having more than 4 dimensions may obviously have

several solutions: it depends on the coefficients of the IMF-n metrics tensor ?p,. Thus

the IMF-n and the ORF4 are not equivalent for the description of physics, because of

the extraneous dimensions of the IMF-n.

The rectangle tensor a!. may be interpreted as a < localization operator >. In the case

of a correlated particles pair, two < localization operators )) may be considered, but the

unique description of the pair as one quantum might be done in an IN{F-n-

2,4 A Spinor Representation of IMF Basis Vectors

Several types of spinors may be defined in relation to infinite momentum frames.

Mathematically, we can always define spinors associated to isotropicr" vectors. We

recall it with the example of how a 2 components spinor can be associated to a 3

dimensional isotropic vector (section 3.2.1).

n The i1'ord "isouopic" is still used in the sense of mthsmtics'
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Because basis vectors of infinite momentum &ame are isotropic, they can be
associated to spinors. Consequently the basis vectors of any infiniæ momentum frame
can be represented with a set of spinors. We give an example of a definition of spinors
in an IMF-2 (section 3.2.2).

2.5 Conclusion About Referential Frames Generated From an IMF
We would suggest to search for an IMF-n where we could express the most general

equations ofthe laws ofphysics, including non local properties. Ifsuch an IIvIF-n does
exist it would be understood as the fundamental Ilv{F-n. It should be represented with a
set ofspinors.

3 Applications of IMF-2

3.1 Recall of Definitions of IMF-2 Coordinates
R. Dtmæn (1984, 1990) has demonstrated [4,5] the following relations between a

two dimensional subluminal referential frame (oRF-2) with the two light cone
coordinatesi" r, Ç of atwo dimensional infinite momentum frame (IN{F-2):

7 = { ( c r + x )

Ç=!@t- '1  Q2\

He has also demonstrated the following relations between a two dimensional
superluminal referential frame (TRF-2) with two other light cone coordinates' ?, ]
defined in the same IMF-2:

cT =+(7 +7)
ï=+(6_7i  e3l

and he has shown that the four light cone coordinates r, Ç, V, I are related by the
following equations:

^> (24',)
Ç = - r

3.2 Applications of IMF-2 to Spinors

3.2.1 Recall of Mathematics: Spinor Associated to an Isotropic Vector

A spinor (V,ô\ 
"un 

be associated to an isoftopic vector À 1tt] as explained below.

Let us consider a 3 dimensional isotropic vector À having complex cofitportents o1, a2,
43. We have

' He called them < inherent light æne coordimtes >.
v He called thm < tachyonic light æne cærdimtes >
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l lÂ l l=" i  +a22+a' ,=o
Let us write the equation 25 as

a l  = - ( a , + i a r ) ( a , - i a r )

and let us define two complex numbers q4, / such as

(25)

Reciprocally the vector

equations

a t + i a 2 - - 2 û '

a r - i a r - 2 r / r '

Â can be deduced from a spinor (v,û) wrtn

a r = V ' - Ô '

o r = i ( v t * Ô t )

at = !2tltû

(26\

(27)

the following

(28)

(2e)

(30)

where the sigrr of ca can be arbitrarily chosen*.

3.2.2 Definition of Spinors Associated to Isotropic Vectors in an IMF-2

A 2 components spinor can be associated to every basis vector of an IMF-2. Here is
an example. In the framework of the special theory of Relativity, the metrics is usually
expressed as

s 2  = c 2 t 2  - x 2  - y t  - z t

Any isotropic 4-vector V satisfies the light cone equation
s 2  = 0

and the vector components are such as
c t t ' - r ' - y ' - z ' = 0  ( l l )

Let us consider the; axis as a privileged direction and write the equation 33 as

(3 1)

c , t ' - x 2 = y ' + t '

Comparing \À/ith the equation 26 we have
a a

a i  = -Y-

a | = - z '

a l = c ' t ' - x '

so rÀ'e may define the complex numbers e1, e2 N
a r = i !
o z = i z

and thus we may associate the isotropic vector f wittr the spinor (rf ,/) such as

iy -z=-2Qz

i y + z = 2 V r 2

tr E. CARTAN Bd to ohæ the minus sictrl

(32)

(34)

(35)

(36)

(37)

(38)

(3e)

(40)

(41)
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c't' - xt =  tlt'û' g2)
If we introduce the vector components in an IMF-2 built with the.r axis

r -- fi(ct + x)
ç=f(ct  _ x\

the equation 42 may be written
r( =2rlr'û2 (44)

Finally, the squared product of the components of a spinor (r,/) ^ro"iated to an
isotropic 4-vector V corresponds to the product of the IMF-2 components c, Ç of the
vector. More precisely when r(> 0 we have

JrÇ = JTvo
and when rÇ<0 welnve

,t-rç = Jziv ô (46)

3.2.3 Conclusion About Spinors in an IlvlF-2
with this simple example of the definition of a spinor in an IMF-2, we see that

spinon may be used to represent isotropic vectors which are the generator of an infiniæ
momentum frame.

3.3 Application of IMF-2 to the Inngitudinal Doppler Elfect

33.1 Subluminal Longitudinal Doppler Effect in an IMF-2
Let us consider a particle at rest in an ordinary referential frame K, and an other

subluminal referential frame K' moving along the .r axis with -a subluminal velocity
v:cp. The particle emits a photon in the direction of the -r axis with a frequurcy vin K
and y' in K'.

If the photon is moving away from the observer in K', the longitudinal Doppler
effect is usually represented with the following equation

y, = vp (7)
,,l l+ f

which is similar to the IMF transformation equation of the r coordinate (see eq. 67 in
ref. 1) i.e.

r' = r!]=4
" l l+  

f  
(48)

so when thq photon is moving away, the longitudinal subluminal Doppler effect in an
IMF-2 may be expressed with the rcoordinates, as

,' : r' 
(4g)

V T

(43)

(45)
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If the photon is moving towards the observer in K', the longitudinal Doppler effect
is usually represented with the following equation

,  J I+Fv'=vff i  (50)

which is similar to the IMF transformation equation of the (coordinate (see eq. 68 in
ref. I ) i.e.

F- 
-=

v .  r ' t j  l+  P'  - , l t -B (51  )

So when the photon is moving nearer, the subluminal longitudinal Doppler effect in an
IMF may be expressed with the fcoordinates, as

I ' C

; 
=? (s2)

3.3.2 Superluminal Longitudinal Doppler Effect in an IMF-2

Let us consider a superluminal particle related to its proper tachyonic referential
frame R, and an other superluminal referential frame R' moving along the .T axis

with a velociqv I = iÊ such as l4r, The particle emits a photon in the direction of

the .i axis with a fiequency 7 in R and l' in R'.
R. Dtmtn- has established [19] an equation of what he called < the tachyonic

Doppler effect >, but it concerns the superluminal longitudinal Doppler effect, only
when the photon is moving away. His equation expressed in a tachyonic referential
frame (TRF)

is similar to the IMF transformation equation of the 7 coordinate (see the system of
equations 82 in ref I ) i.e.

(53)

(s4)

but his demonstration was restrictedb 7 > 1 . lVhen V . -1 he would have found
---

_ r l -F+lv' - v:+: (55)
l -B-r

which is similar to the IMF transformation equation of the ? coordinate when p < -l

(see the system ofequations 84 in ref. l) i.e.

,,-rJ7f,
r=-

lB*r
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So when the photôn is moving away, the longitudinal superluminal Doppler effect in an
IMF may be expressed as

!=l!l 67)
v  t t t

In the case when the photon is moving neruer to the hypothetical superluminal
observer, he would have found the equation

* l f+ t
l, = !r-::

'17-r
which is similar to the following IMF transformation equation

when /> I (see the system ofequations 82 in ref. l)
I=-
I ô  1

7 ,  - 7 t lQ+ t
5 _ 5 - _

' lB-r
or he would have found the equation

(sE)

or tne 4 coordlnate

(5e)

(60)

which is similar to the following IN4F transformation equation of the ( coordinate

when p < -1 (see the system of equations 84 in ref. I )
f-=-

( =-(9+L (6r)
' ' l-B*t

So when the photon is moving nearer, the longitudinal superluminal Doppler effect in
an IMF may be expressed as

!=ltl (62)
v  l ç l

Finally the IMF-2 transformations are directly related to the longitudinal Doppler
effect, in both the spacelike region and the timelike region.

3J3 Graphs of the Superluminal and Subluminal, Longitudinal Doppler Effect
In the same communication [9] R. Dtmnn has proposed to draw a common graph

of both the superluminal longitudinal Doppler effect and the subluminal longitudinal
Doppler effect, but it concems the only case when the photon is moving away from the
observer.

We have re-drawn it in the figure I below, with the Mathcud 6.0 SE software, using
the following function of the Bvelocity in the interval [-5,+ 5]:

N,(f)=W,
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where Nr is a frequency ratio corresponding to the following z coordinate ratio of the
IMF transformation

(64)

- 5 - 4 - 3 - 2 - 1 0 1 2 3 1

B
Yelocity v/c

Figure 1: Longitudinal Doppler effect when the photon is moving away from
observer

- 5 - 4 - 3 - 2 - 1 0 1 2 3 4 5

v"toiw rrl"

Figure 2: Inngitudinal Doppler effect when the photon is moving nearer to the observer

l - r l
r t '  l  r ' l  V t  T '

f f ,  =  -  = i - l  o r  N ,= -= -
v  l r l  v  r

I

it)

I
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We have also drawn a graph of the longitudinal Doppler effect when the photon is
moving towards the observer, in the figure 2 above, with the Mathcad 6.0 sË'software,
using the following function of the Bvelocity in the same interval [-5,+ 5]:

Nr(fl)=,lg::4
r P- 4 

(65)

where l/2 is a frequency ratio corresponding to the followin g Ç coordimte ratio of the
IMF transformation

v, l7,l
IV, =;- = l*l Of-  

v  l ( l

33.4 Conclusion About the Doppler Effect in an IMF-2
With this example, we have shown that the longitudinal Doppler effect is directly

related to the IMF-2 coordinates transformation. Thus star red shifts may be interpr*ed
with a 2 dimensional infinite momentum frame (IMF-2).

Now we propose an inærpretation of the gaphs of the Doppler effect, conceming
superluminal velocities: If tachyons exists, they would produce a Doppler effect which
is similar to that of subluminal particles. So the frequency ratio i/ would not be a
sufficient knowledge to distinguish a subluminal Doppler effect and a superluminal
Doppler effect.

4 Application of IMF-6

4.1 Recall About the << 6 Dimensional Universe n
In a previous communication, G. Nnanr (2000) has introduced a 6 dimensional

manifold U6 named the < six dimensional Universe >> l2),to build a relativist model of a
particle antiparticle pair having relativist E.P.R. correlations. It has the following
metrics with the signatwe (+++--- )

ds2 = Gr"dX'dX" (g.u=r,z.r..r,s.e) (67)
In the framework of the special theory of Relativity, the metrics tensor Gr simplifies

to diagonal terms and so the U6 interval can be expressed as

a,' = (ax'\2 *(a*'\ ' +(ax,\' -(*,\ ' -(*')' -(*')'

(66)
r r r / ç
J Y t = - = -' v ç

(68)

wJrere by definition I,*,* are the spacelike (superluminal) coordinates and,*,x5,
lf are the timelike (subluminal) coordinates.

Any isotropic vector I satisfies the general equation ofthe light hypercone
.  d s 2  = 0

which can be developped in U6 as

(or')' *(ax'\' *(ax,)'-(orr)' -(*')' -(axu\' =o

r92
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r
4.2 Example of an IMF-6 Deduced From the < 6 Dimensional Universe D

An isotropic vector can be defined with a linear combination of a timelike vector and
a spacelike vector of a given pseudo Euclidean space, as in the definition of IMF-2
coordinates (see section 3.1). The following space time association in the IMF-2
equation 22 

x ë ct (71)
in which the .r axis has been privileged, suggests the naive definition of an IMF6
written below

' '  =  È(X ' *  x ' )  ç '  =  È(X '  
-  X ' )

7 '  = 1(x '  + x ' )  ç '  = 4(x 'z -  .v5) e2)
r, =:!(x, * x^) ç' = a(x' - xu)

The system ofequations 72 deftnes a system of6 light hypercone coordinates: it is
one possible IMF-6. However the system of equations 72 has priviledged the following
space time association in U6

Xt <+ X'
x -ë^ -
X3 ++ X6

4.3 About Problems of the Space Time Duality

The space time duality in extending the usual Lorentz group to superluminal
transformations is well known [20]: a transformation of a subluminal referential frame
(ORF4) into a superluminal referential frame (TRF4), both having 4 dimensions,
would produce a space time permutation, which is not possible because of the mismatch
between the number of space and time dimensions.

Because infinite momentum frames allow to describe both subluminal and
superluminal velocities, their generalization to more than two dimensions cannot avoid
the problem of space time duality. An IMF4 corresponding to both an ORF4 and a
TRF4, all having 4 dimensions, does not avoid the mismatch between the 3
dimensional space and the one dimensional time.

A 6 dimensional infinite momentum frame (INtr-6) with a metrics having the
signature (+++--- ) has 3 "time" dimensions and 3 'fspace" dimensions, so there is no
mismatch between space and time dimensions. The space time pennutation required by
the superluminal extension of the Lorentz transformations is quite possible within such
an IMF-6.

The second problem of space time duality with several "time" dimensions is that we
cannot avoid to privilege a particular space time permutation: in the naive example of
IMF-6 (see section 4.2) the privileged space time association (eq. 73) defines one
particular space time permutation in U6.

There are several possible space time permutations in U6. For example the spacelike
axis,l may be simply associated with the timelike axis I or with / as shown below

(73)
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Xt <+ X6

X2 <+ Xa (74)

X3 <+ Xs
Moreover space time permutations in [16 may also include rotations of the spacelike
axis I , X, Y within the spacelike region and/or rotations of the timelike axis f , Xt,
)f within the timelike region.

4.4 Introduction of Pauli Matrix in the U6 Light Hypercone Equation

Every possible space time permutation in U6, including rotations within the spacelike
region and/or rotations within the timelike region, may be associated to a set of
isotropic vectors of U6, which are solutions of the light hypercone equation 70.

As it is usual in quantum mechanics, the sum of 3 real squares may be factorized
with the use of hypercomplex numbers represented by Pauli matrix. So we may write in
the spacelike region:

(*'\ '  *(ax') ' *(ax') ' =(o,,tx' + o,rtx2 + o,,tx') ' (7s)

where (a1, 62, ot) represents a permutation of the Pauli matrix, and we may write in the
timelike region:

(*')' *(ax'\' *(ax'l ' = (o rttxa + o rtlx' + o u,txu)'

where (oa, os, oe\ represents a second permutation of the Pauli matrix. Thus the U6
light hypercone equation 70 is equivalent to the factoized equation below

(orctXt +ojX2 +ort lX3 +oodXa +ort lX5 +oudXu)

x(ordXt +o,(L{2 +ordXi -ordXa -ordXi -oudXu)=0 
Q7)

4.5 Conclusion About the Us Light Hypercone Equation

An IMF-6 may be generated from the U6 light hypercone equation. The introduction
of Pauli matrix in the U6 light hypercone equation also suggests to use spinor
representations of the IIVIF-6.

s Conclusion
We have shown that the longitudinal Doppler effect may be related to two

transformed light cone coordinates (II\4F-2). From this point of view, star redshifts
should be interpreted with infinite momentum frames.

We have shown that spinors can be associated to isotropic vectors which are the
basis vectors of an infinite momentum frame. We have shown that usual referential
frames can be deduced from an infinite momentum frame (IMF-n), having n > 4
dimensions.

Can we represent with a set of spinors related to a fundamental IMF-n, the
emergence of an observed time arrow and three observed oriented space directions ?
This question should be studied in a next work.

(76',)
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