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Abstract
So-called hidden variables introduced in quantum mechanics by Louis de Broglie and
David Bohm have been revived in the recent works by the author. The start viewpoint
was the following: All the phenomena, which we observe in the quantum world, should
reflect structural properties of the real space. Thus the scale 10-28 cm at which
fundamental interactions intersect has been treated as the size of a building block of the
space. The mechanics of a moving particle that has been constructed is deterministic by
its nature and shows that the particle interacts with cells of the space creating
elementary excitations called "inertons" in a cellular substrate. The existence of inertons
has been verified experimentally.
Key words: space structure, particle, inertons, quantum mechanics

I Conceptual Difficulties of Quantum Theory

The main original physical parameters of quantum theory are Planck's constant h
and de Broglie's wavelength iv. These two enter into the two major quantum mechanical
relationships for a particle proposed by Louis de Broglie (see, e.g. de Broglie, 1986)

E = p v ;  I : U p .  ( 1 )

De Broglie believed that E and p were the energy and the momentum of the particle, v
was the peculiar particle's frequency that coincided with the frequency of a wave that
specified by the wavelength À and traveled together with the particle. Later when
Schrôdinger's equation appeared and Heisenberg proposed the uncertainty relations, the
interpretation of the said characteristics changed. Namely, the notion of the particle was
transformed to a "particle-wave" and hence l, and v became characteristics of the
particle-wave. Born interpreted the square of the absolute magnitude of the wave ry-
function of the Schrôdinger equation as the probability of particle location in a place
described by the radius vector r. Thus Bom finally rejected any physical interpretation
from a set of parameters that described a quantum system. Since the end of the 1920s,
only one parameter has been perceived as pure physical - the particle-wave wavelength
I called the de Broglie wavelength. In experimental physics, those waves received also
another name - the matter waves. Such a name directly says that corpuscles (but not
dim "particle-waves") are able to manifest a wave behavior.
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Since 1952 de Broglie follorved two papers by Bohm (1952) (see also Bohm, 1996)
turned back to his initial ideas on the foundations of the wave mechanics of particles.
De Broglie (see, e.g. de Broglie, 1960, 1987) believed that a submicroscopic medium
interfered in the motion of a particle and the appropriated wave guided the particle. He
finnly believed the causal interpretation of quantum mechanics and warned that the
resolution of the issue should not be based on the wave y-function formalism, as tlre ry-
function was determined only in the phase space but not in a real one. His own attempts
were aimed at seeking for the form of the so-called double solution.

In the case of the Dirac formaljsm things get worse. The formalism introduced nerv
additional notions such as spinors and Dirac's four-row matrices, which allowed the
calculation ofthe energy states ofthe quantum system studied and changes in the states
due to the influence of outside factors. However, the formalism did not propose any
idea on the reasons of the wave behavior of matter and a nature ofthe particle spin.

So far, modern studies devoted to the foundations of quantum mechanics have tried
to reach the deepest understanding of quantum theory reasoned that just the ry-function
formalism is original and it is often exploited even on the scale of Planck lengh
r/1Cnicrl - l0-33 cm. This is especially true for quantum field theory including quantum
gravity (see, e.g. Wallace (2000), Sahni and Wang (2000)). Besides, there are views that
a gravitationally induced modification to the de Broglie's wave-particle duality is
needed when gravitational effects are incorporated into the quantum measurement
process, Ahluwalia (1994,2000), Kempf et al. ( 1995). Other approaches try to introduce
a phenomenological description based on the metric tensor g;1 in t-vpical quantum
problems,'t Hooft (1998). Classical Einstein gravity is also exploited in condensed
matter: some parameters such as mass, spin, velocit-v, etc. are combined to provide an
effective "metric" that then is entered into the quantum mechanical equations (e.g.
Danilov et al. ( 1996) and Leonhard and Piu,nicki (1999)).

Thus, the trend has been forward to the entire intricacy: the formalism of ry-function
penetrates to the Planck length interior and the Einstein metric fbrmalism advances to
the same scale as well. Nobody wishes to accept the fact that on the size comparable
with the de Broglie wavelength i of an object rnethods of general relativity fail. No one
wants to go deeply into de Broglie's remark that the ry-function is only a reflection of
some hidden variables of a particle moving in the real physical space. The rp-function is
not the mother of particle natur€ and therefore it cannot serve as a vanable of the
expansion of a particle's characteristic in terms of ry at the size less than the particle's de
Broglie wavelength L.

2 New Llnderstanding

Among new approaches describing gravity in the microworld, we can notice the
mathematical knot theory (see, e.g. Pullin, 1993), which has been developed, Wallace
(2000) attempting to find rules to establish when one knot can be transformed into
another without untying it. In the theory, the question is reduced to a certain knot
invariant problem, which does not change with knot deformations; knot invariants being
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deformed constantly by gauge transformations should stay unchangeable. The approach
is similar in many aspects 1o concepts elaborated in elementary particle physics.

Ofspecial note is the approach proposed by Bounias (1990, 2000) and Bounias and
Bonaly (1994,1996,1997). Basing on topology and set theory, they have demonstated
that the necessity of the existence of the empty set leads to the topological spaces
resulting in a "physical universe". Namely, they have investigated links beween
physical existence, observability, and information. The introduction of the empty
hyperset has allowed a preliminary construction of a formal structure that correlates
with the degenerate cell ofspace supporting conditions for the existence ofa universe.
Besides, among other results we can point to their very promising hypothesis on a non-
metric topological distance as the synmetric difference between sets: this could be a
good altemative to the conventional metric distance which so far is still treated as the
major characteristic in all concepts employed in gravitational physics, cosmology, and
partly in quantum physics.

In my own line of research I started from the fact that on the scale -10-2t cm
constants of electromagnetic, weak and strong interactions as functions of distance
between interacting particles intersect (see, e.g., Okun, 1988). On the other hand, in the
high energy physics theorists deal rvith an abstract "superparticle" which different states
are electron, muon, quark, etc. (see, e.g. Arnaldi, 2000). A simple logical deduction
suggests by itself: the physical space at the said range has a peculiarity that could be
associated with presence of structural blocks rvhich one can call just superparticles (or
elementary cells, or balls). Then one may expect that a theory of the physical space
densely packed with those superparticles rvill be able to overcome many difficulties
which are insuperable in formal theories of both quantum gravity and high energy
physics. Thus a submicroscopic theory bein-e based on the structure of fine-grained
space will be able to widely expand our knowledge about the origin of matter, the
fbundations of quantum mechanics and the fbundations of quantum gravity

The first step of the theory, Krasnoholovets and lvanovsky (1993), Krasnoholovets.
(1997, 2000a,2000b), focused on the appearance of a particle from a superparticle,
which initially was found in the degenerate state. The particle has been defined as a
local curvature, or a local deformation of a superparticle and hence the appearance of
the deformation in a sup€rparticle means the induction of mass in it, m oc CV,çVpn(C
is the dimensional constant, V,up is the initial volume of a degenerate superparticle and
V*n is the volume of the deformed superparticle, i.e. the volume of the created particle).
So the real space was regarded rather as a substrate, or "quantum aether", and the notion
of a particle in it was adequately determined.

In condsnsed matter, we meet the effect of the deformation of the crystal lattice in
the surrounding ofa foreign particle and the solvation effect in liquids. îherefore, the
second step of the theory was the proposition that around a particle a deformation coat
was induced. This coat should play the role of a screen shielding the particle from the
degenerate space substrate. Within the coat, the space substrate should be considered as
a crystal and superparticles here feature mass. Thus the coat may be treated as a peculiar
crystallite. The size of the crystallite was associated with the Compton wavelength of
the particle, Àco.: h/mc.
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The next step needed a correct physical model of the motion of the particle. From
the solid state physics we know that the motion of particles is accompanied with the
motion of elementary excitations of some sort, namely, the particle when it is moving in
a solid emits and absorbs quasi-particles such as excitons, phonons, etc. By analogy, the
motion of the physical "point" (particle cell) in the entirely packed space must be
accompanied by the interaction with sunounding coming "points" of the space, i.e.
superpafiicle cells. Hence the particle is scattered by structural blocks ofthe space that
in turn should lead to the induction of elementary excitations in superparticles, which
contact the moving prticle. The corresponding excitations were called "inertons" as the
notion "inertia" means the resistance to the motion (thus particle's inertons reflect
resistance on the side of the space in respect to the moving particle). Each inerton
carries a bit of the particle deformatioru that is, an inerton is characterized by the mass
as well. An inerton migrates from superparticle to superparticle by relay mechanism.
The deformation coat, or crystallite (by analogy with crystal physics), is pulled by the
particle: superparticles, which form the crystallite, do not move from their positions in
the space substrate, however, the massive state of crystallite's superparticles is passed
on from superparticles to superparticles along the whole particle path.

3 Submicroscopic Mechanics

The Lagrangian that is able to satisff the described motion of a particle and the
ensemble of its inertons can be written as (Krasnoholovets and lvanovsky, 1993)

L: (l12) gi, dxi/dt dx/dt + (il2)2,g(')1dx1.1i/dq.)dx1.i/dt1"r

- E" 6.-a,(r.,(e (r/T1,1) [Xi{{g;00$oy*1 dx,.f/dt1,l+ (vo)i{{g'00 gr.rqr)} t.l] Q)

where the first term characterizes the kinetics energy of the particle, the second term
characterizes the kinetics energy of the ensemble of N inertons, emitted from the
particle and the third ærm specifies the contact interaction between the particle and its
inertons. X is the ith component of the position of the particle; gi1 is metric tensor
components generated by the particle; (vo)' is the ith component of the initial particle's
velocity vector vo. Index s corresponds to the number of respective inertons; q./ is the
component of the position of the sth inerton; êi.x ir the metric tensor components of the
position of the sth inerton. lÆi"; is the frequency of collisions of the particle with the sth
inerton. Kronecker's symbol ô'-o<0, ,t ) provides the agreement of proper times of the
prticle t and the sth inerton Q9 at the instant of their collision (Ât1,; is the time interval
after expire of whiclU measuring from the initial moment t : 0, the moving particle

emits the sth inerton). The interaction operator {tg,oOÊ<.i*} possesses special properties:
0 : 0 during a short time interval ôt when the particle and the sth inerton is in direct
contact and 0 : I when the particle and the sth inerton fly apart along their own paths.
Note that in the model presented the metric tensor characterizes changing in sizes of the
particle and superparticles.

In the so-called relativistic case when the initial velocity vs of the particle is close to
the speed of light c, the relativistic mechanics prescribes the lagrangtan

L.4 : -lvfac2 'l1l-vo2lc'y.
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On examination of the relativistic particle, we shall introduce into the Lagranglan 3
terms, which describe inertons and their interaction with the particle. For this purpose,
the following transformation in 3 should be made (Krasnoholovets,1997)

L,"r:- gc2 {- Olec2) [gù dxTdt dB/dt+ x, g% dx<o7dk"r dq.//dQ,r

-I,ù-.,(r.,(.t(2td|a)(X'{{giq0&.rqi} dq.//dQ,r + (vo)'{{g,ogg,u*} r,,./)J} (4)

where g: gu ôii.
The Euler-Lagrange equations

d[ôLlô(dQld\,i)l/dt<o - ôLlQ= ç (5)

written for the particle (Q = X') and the sth inerton (Q : \ei) coincide for the
Lagrangians L :L, 3 , and I :L,"1, 4. This is true only (Dubrovin et al. ( I 986) in the case
when the time t entered into the Lagrangians 3 and 4 is considered as the natural
parameter, i.e. t = Uvç where I is the length of the particle path.

For the variables X1,1* = X.(t<o) and xu;* = x*(t(r) one obtains from eq. 5 the
equations of extremals (written as functions of the proper time t1"1 of the emitted sth
inerton):

d2 xu,k/dt,.r2 + fkiidXr",i/dtt", dx,.fildt1,i + (zrlT1,1) g*i {{g,00Êr.r*} dq.//d(,i : 0; (6)

d: x,.,k/dt,,12 + fktsrri dxlrf/dtirr dxrri'i/dt1.r

- (dTt"r) [&.r" {{g,'Oêi"rq,} (dxtJ/dk,r - (vo))] :0; (7)

here, fkii and fk1.r1 are symmetrical connections (see, e.g. Dubrovin et al., 1996) for the
particle and tbr the sth inerton, respectively; indices i, j, k, and q take values 7,2,3.
When the particle and the sth inerton adhere, the operator 0 : 0 and therefore the
tennwise difference between eqs. 6 and 7 becomes

1d2 4.,kidq,,2 - d2 x,"ykldt,.121 + 1fkud4.,yd-q,, d\.j/dt 9

fari d&o'ldt<"r dx<.fldk,l) :0. (8)

Eq. 8 specifies the merging the particle and the sth inerton into a common system. This
means the acceleration that the particle experiences, coincides with that of the sth
inerton. Then the difference in the first set ofparentheses in eq. 8 is equal to zera and
instead of eq. 8 we get

fkil d\,1iidt1"1 dX1,fi/dt1"r : fki.iii dxçii/dt*.1 dq,iidt1"r. (9)

Coefficients fk;; and !kr,6 are generated by the particle mass M and the sth inerton mass
m15; respectively, and that is why f*;1 Æ*1s1; : lWfii51. This signifies that relationship 9
can be rewritten explicitly

Mvg.': mir;c' (10)

for diagonal metric components of the particle and inerton velocities, (vs,.) is the
velocity of the particle after its scatering by the sth inerton with initial velocity c).

When the particle and the sth inerton bounce apart, we must solve the total
equations of motion, 6 and7, i.e., all terms in the equations should be held. However, if
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we allow the metric tensors constant, the equations of motion may be simplified to the
form that does not include the second nonlinear term in both eqs. 6 and,7. The structure
and properties of the metric tensors can be chosen as follows

f,i: ôiiM; g'r: ô{/M; gu dq : ôI;

&srii-- ôii mrsr: $,sti: ôli/m,,r. $rsrki gtttto : ô\.

Thus having given gii and êt,lii are equal to constant, the second term in both eqs. 7 and
8 is made to be reduced to zero. Relationships 11 and 10 allow transforming of the
interaction operator in eqs. 7 and& to forms

gki (gio0guo,1t/2 - {{mt,r/}vl} : vs1,1k/c;

ê* (g''0Êi.u)t" - {{lwq.1}: c /vo(.)k

where vs1,y* is the kth component of the vector v61.1. Thus expressions 12 and 13 permit
the transformation of eqs. 7 and 8 (in which second terms are dropped) to the form

d2 X,,1kidt1.1l + 1n'ro,.,k/cT19) dq.f/dt1"1 : 0;

d2 x,,rk/dqo2 - (æc lvot,rk Tr.r) [dx{.i/dt(,) - (vool)k] : 0.

lnitial conditions are

dX1';(t1'r + Ât1.1)|t(.)=0 /dtt.l : dx(')(At(.))/dt{., = V1s;t), x1s1l4,r={ = 0; dx1ry'dt1,)L(r)=0: c.

If we consider the ensemble of inertons as the whole object, an inerton cloud with
the rest ûlÉrSS rTle, which sunounds a moving particle with the rest mass Mo then the
Lagangian may be presented as

L : _ M.c2 { t_ ( llMoc:)lMo (d)?dt)2 + m6 (dx/dr)2

- (2n11) {!Mpmo} (X dx/dt + vox)]} r/2. ( 1 6 )

Thus the particle moves along the X-axis with the velocity d)Vdt 1v6 is the initial
velocity); x is the distance between the inerton cloud and the particle, dx/dt is the
velocity of the inertons cloud, and 1Æ is the frequency of collisions between the particle
and cloud. The equations of motion are reduced to the following

&xta( + (rvoicT) ôridt:0;

az xta{ - (rc /voT) (ôVdt - vc,): 0.

The corresponding solutions to eqs. 17 and 1 8 for the particle and the inerton cloud are

ôVdt : vs(l- lsin (m/T)l );
X(t) : vet + (Vtt) {(-11*l cos(rtlT) - (1 + 2 tVTl)};

l,: voT;

x: (Âfr) lsin (rtlT)l;

dx/dt : c(- l)tnlcos (rt/T);

( le)

( t  l )

(r2)
(13 )

( 1 4 )

( 1 5 )

(17)

(1 8)

A: cT.
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Expressions 19 show that the velocity of the particle periodically oscillates and À is the
amplitude of parficle's oscillations along its path. In particular, I is the period of
oscillation of the particle velocity that periodically changes between vo and zero. The
inertons cloud periodically leaves the particle and then comes back; Â is the amplitude
of oscillations of the cloud.

The frequency of collisions of the particle with the inerton cloud allows the
presentation in two ways: l) via the collision of the particle with the cloud, i.e.,lf| =
volL and 2) via the collision of the inerton cloud with the particle, i.e., l lT : c/Â. These
two expressions result into the relationship

v,r/}.: c/Â, ( 21 )

which connects the spatial period ), of oscillations of the particle with the amplitude Â
of the inertons cloud, i.e., maximal distance to *'hich inertons are removed from the
particle.

lf we introduce a new variable

dvdt : dludt - (niT) X r f M1;,im,,l (22)

in the Lagrangian 16, we arrive to the canonical form on variables for the particle

(23)

This Lagrangian allorv us to obtain (Krasnoholovets,1997) the effective Hamiltonian of
the particle that describes its behavior relative to the center of inertia of the particle-
inerton cloud system

H.tï: p:,'2M - Meru2T)2 X2i2 (24)

where M: M6i{{l-vo:ic:; (and also m: ffiry'll l-vç2/cr}). The harmonic oscillator
Hamiltonian 24 allows one to write the Hamilton-Jacobi equation for a shortened action
Sr of the particle

(ôSrlôX):z2M + M (2ni2T)' x',2 : E. (2 -5)

Here E is the energy of the moving particle. Introduction of the action-angle variables
leads to the following increment of the particle action rvithin the cvclic period 2T,
Krasnoholovets and Ivanovsky ( 1993),

À S r = V  p d X : E . 2 T . (26)

One can write Eq. 26 via the frequency v: ll2T as well. At the same time lr'f is the
fiequency of collisions of the particle wrth its inertons cloud. Orving to the relation E:
Mvr-,r2 rve also get

A S r : M v o . v u T : p t l
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where ps: Mvo is the particle initial momentum. Now if we equate the values ASr and
Planck's constant h, we obtain instead of expressions 26 and 27 major relationships l,
which form the basis of conventional quantum mechanics.

De Broglie (1986), when writing relationships 1, noted that they resulted from the
comparison of the action of a particle moving rectilinearly and uniformly (with the
energy E and the momentum Mv6) and the phase of a plane monochromatic wave
extended in the same direction (with the frequency E/h and the wavelength h,Mve). Yet
the first relation in I he considered as the main original axiom of quantum theory.

In our case, expressions 26 and 27 have been derived starting from the
Hamiltonian 24 or the Hamilton-Jacobi eq. 25 of the particle. The main peculiarity of
our model is that the Hamiltonian and the Hamilton-Jacobi equation describe a particle
whose motion is not uniform but oscillatory. It is the space substrate, which induces the
harmonic potential responding to the disturbance of the space by the moving particle.
The oscillatory motion of the particle is characterized by the relation

l,: voT (28)

which connects ttre initial velocity of the particle vo with the spatial period of particle
oscillations l, (or the free path length of the particle), and the time interval T during
which the particle remains free, i.e. does not collide with its inerton cloud. On the other
hand, relation 28 holds for a monochromatic plane wave that spreads in the real physical
space: l. is the wavelenglh, T is the period and vo is the phase velocity of the wave. Thus
with the availability of the harmonic poæntial, the behavior of the particle follows the
behavior of a wave and, therefore, such a motion should be marked by a very specific
value of the adiabatic invariant, or increment of the particle action ASr within the cyclic
period. It is quiæ reasonable to assume that in this case the value of ÂSr is minimum,
which is equal to Planck's constant h.

Two relationships I immediately allow the deduction of the Schrôdinger equation,
de Broglie (1986). Moreover, the presence of the proper time of a particle in the
Schnidinger equation, Krasnoholovets (1997) signifies that the equation is Lorentz
invariant. The wave qr-fimction acquires a sense of the imaging of a real wave function
that characterizes the motion of a complicated formation - the particle and its inerton
cloud. The real wave function (and its wave y-function imaging or map) is defined in
the range that is exemplified by the dimensions of the particle's inerton cloud: l. along
the particle path and 2A in transversal directions. In such amaïner, inertons acquire the
sense of a substructure of the matter waves and should be treated as carriers of inert
properties of matter. Heisenberg's uncertainty relations gain a deterministic
interpretation as a quantum system now is complemented by the inerton cloud;
therefore, an unknown value of the momenturn of the particle automatically is
compensated by the corresponding momentum of the particle's inertons.

4 Spin and Relativistic Approximation

The notion of spin of a particle is associated with an intrinsic particle motion.
Several tens of works have been devoted to the spin problem. Major of them is
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reviewed in the recent author's paper, Krasnoholovets 2000a). Here we add some recent
references: Chashihin (2000), Rangelov (2001), Danilov et al. (1996), and Plyuschay
(1989, 1990, 2000). Main ideas of the works quoted in Krasnoholovets (2000a) and in
the mentioned references are reduced to a moving particle that is surrounded by a wave,
or a small massless particle, or an ensemble of small massless particles, which engage
in a circular motion.

Having tried the introduction of the notion of spin in the concept presented, let us
look at the situations in which the particle spin manifest itself explicitly. First, it appears
as an additional member r h/2 to the projection onto the z-axis of the moment of
momenturn rxMvo of a particle. Second, it introduces the correction + eBrtr(2M) to the
energy of a charged particle in the magnetic field with the projection of the induction
onto the z-axis equals to 8,. Third, it provides for the Pauli exclusion principle.

Of cowse, it seems quite reasonable to assume that the spin in fact reflects some
kind of proper rotation of the particle. However, we should keep in mind that the
operation 'rotor' is typical for the electromagnetic field that the particle generates in the
environment when it starts to move. In other words, the appearance of the
electromagnetic field in the particle surrounding one may associate just with its proper
rotation ofsome sort. In our concept, superparticles that form the space net are not rigid;
they fluctuate and allow local stable and unstable deformations. Thus the particle may
be considered as not rigid as well. In this case along with an oscillating rectilinear
motion, the particle is able to undergo some kind of an inner pulsation, like a drop.
Besides the pulsation can be oriented either along the prticle velocity vector or
diametrically opposite to it. Then the Lagrangians 16 and23 change to the matrix form,
Krasnoholovets (2000a).

I : l l  r, l l , 0.: 1, I.
The function Locan be written as

Lo : -gc2{l - [Utrpu,t + ertioJ I g"rlr,,

(2e)

(30)
Here U1spag is the same as in expression 2 and Uti,o) o is similar to Ut"puo, however, all
spatial coordinates (and velocities) are replaced for the intrinsic ones: X '+ Eo for the
particle and x * {" for the inerton cloud. So inertons carry bits of the particle pulsation
as well. The intrinsic motion is treated as a function of the proper time of the particle t.
Then the equations of motion and the solutions to them are quite similar to those
obtained in the previous section. The intrinsic velocity dEo/dt ranges between tve ("+"
if a: f and "-" if a: J) and zero: dïldt ranges between + c and zero within the
segment 2Â of the spatial path of the inerton cloud. Such a motion is characterizedby
relationships similar to 26 and27 and hence is marked by Planck's constant h.

The intrinsic variables do not appear in the case of a free moving particle.
However, an external field being superimposed on the system is able to engage into the
variables. Then we can write the wave equation for the spin variable of the particle

(I l" '  I 2M- eoeo ) p:0 (31)
where the operator IIo : (ao - eA) and z": - ihd/dEo is the operator of the intrinsic
momenturn of the particle, e and A are the electric charge and the vector potential of the
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field, respectively. 26o is the eigenfunction and eo is the eigenvalue; the function eo : I if
a : f a n d e o : - l i f a : 1 .

If the induction of the magnetic field has only one component B, aligned with the z-
axis, the solution to eq. 31 becomes

e": e"ehB, / 2M

yn: n't/a exp[- (r o, - eA*) I 2ettB,].

(32)

(33)

So e 1.1 : ! ehBrl2M and therefore the eigenvalues of the so-called spin operator S1g are

S1,1' : + h/2; S1. l* :  St, t r  :  0. (34)

Thus, the intrinsic motion introduced above satisfies the behavior of a particle in
the magnetic field. The total orbital moment of the electron in an atom includes the spin
contribution proceeding just from the interaction of the electron with the magnetic field.
Moreover, the availability of two possible antipodal intrinsic motions of the particle
allows the satisfaction of the Pauli exclusion principle. Consequently, the model of the
spin described complies with the three said requirements.

Now the total Hamiltonian of a particle can be represented in the form of

Hr.r : c {{pt * n1.t2 * Mottt} (35)

(a similar Hamiltonian describes the particle's inerton cloud). As can easily be seen
from expression 35, the spin introduces an additional energy to the particle Hamiltonian
transforming it to a matrix form. Then following Dirac we can linearize the matrix H1.1
anddoing so we will arrive to the Dirac Hamiltonian

Hp,1ru": ccp + p:Mocl. (36)

At this point, information on the matric operators î1,1goes into the Dirac matrices. Thus
from the physical point of view the Dirac transformation (36) is substantiaæd only in
the case when the initial Hamiltonian is a matrix as well. And just this fact has been
demonstrated in the theory proposed herein.

The Dirac formalism is correct in the range r > h/lvfc and is restricted by the
amplitude of inerton cloud A: Àclve. At r < h/lv{c the approach described above can
easily be applied. It has been pointed out, Krasnoholovets (2000a), that the inerton
cloud and the oscillatory mode of the crystallite's superparticles, which vibrate in the
environment of the partiele, cause the nature of spinor components. Two possible
projections of spin enlarge the total number of the Dirac matrices and the spinors to
four.

The submicroscopic consideration allows one to shed light on the interpretation of
the so'called negative kinetic energy and the negative mass of rest of a free particle,
which enter into the solutions of the corresponding Dirac equation (see, e.g. Schiff,
1959). The negative spectral eigenvalues E_: -{{c2p2 * -tco} are interpreted as states
with the negative energy of the particle (and because of that Dirac proposed to refer it to
the energy of the positron). However, the presence of the inerton cloud that oscillates
near the particle lets us to construe the eigenvalues ofthe particle as a spectrum of "left"
and "right" inerton waves which respectively emitted and absorbed by the particle. Such
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waves, eo _ : go(r - at) and go + : go(r + at) where o specifies the spin projection,
depend on the space variables which can be made identical, while the time variable t is
entered as either +t or -t. In quantum mechanics the operator ihôlôt just corresponds to
the particle energy E. Thus, we can interpret the positive eigenvalue E* as the total
energy of the inerton cloud that moves away from the particle while the negative
eigenvalue E_ as the total energy of the inerton cloud that comes back to the particle.

This must be paralleled with the recent research conducted by Dubois (2000a,b)
who has studied anticipation in physical systems considering anticipation as their inner
property which is embedded in the system but is not a model-based prediction. In
particular, it has been shown by Dubois that such a property is inherent to
electromagnetism and quanlum mechanics. Namely, Dubois (2000b) started from space-
time complex continuous derivatives which were constmcted in such a way that it gave
the discrete forward and backward derivatives ô*lî,t. Here, Dubois's methodology may
be justified in terms of the present submicroscopic approach because the derivative llù.
could be referred to inertons flying away from the particle and the derivative ô*lôt could
be assigned to inertons moving backward to the particle. Besides the two types of
velocities are present in anticipatory physical systems, so called "phase" and ;'group"

velocities. These two velocities would also be ascribed to two opposite flows of
inertons. We can also emphasizethat the Dubois'idea about the masses of particles as
properties of space-time shifts is also very close to Bounias'(1990) and the author's
hypotheses on mass as a local deformation in the space net. Note that the hypothesis has
found future trends, Bounias and Krasnoholovets (2002\: it allows evidence in terms of
the topology and tiactal geometry.

5 Inertons in Action: Experimental Verification

1. The photoelectric effect occumng under strong inadiation in the case that the
energy of the incident light is essentially smaller than the ionization potential of gas
atoms and the work function of the metal has been reconsidered from the
submicroscopic viewpoint. It has been shown (Krasnoholovets, 2001a) that the
(nonlinear) multiphoton theory, which has widely been used so far, and the effective
photon concept should be changed fbr a new rnethodology. The author's approach was
based on the hypothesis that inerton clouds are expanded around atoms'electrons. That
means that the effective cross-section o of an atom's electron tosether with the electron's
inerton cloud falls within the range betrveen i2 and À: 1i.e. lO:ln cm2 < o < l0-r2 cm:)
that much exceeds the cross-section area of the actual atom size, l0-16 cm:. The intensity
of light in fbcused laser pulses used fbr the stud.v- of gas ionization and photoemission
from metals was of the order of l0l: to lOlj wcm2 Thus several tens of photons
simultaneously should pierce the electron's inerton cloud and at least several of them
could be engaged with the cloud's inertons and scattered by thern. Consequently, the
electron receives the energy needed to release from an atom or metal. The theory indeed
has been successfully applied to the numerous experiments, Krasnoholovets (2001a).

2. [n condensed media, inerton clouds of separate particles (electrons, atoms, and
molecules) should overlap forming the entire elastic inerton field, which densely floods
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in the media. It has been theoretically shown, Krasnoholovets and Byckov (2000), that
in this case the force matrix W that determines branches of acoustic vibrations in solids
comprises of two members: W : Vuo + V.*. Here the first member is responsible for the
usual elastic electromagnetic interaction of atoms and is responsible just for the
availability of acoustic properties of solids, but the second one is originating from the
overlapping of atoms' inerton clouds. It is remarkable that each of the members is
involved in the expression for W equally. Therefore, an inerton wave sriking an object
will influence the object much as an applied ultrasound. Among the features of
ultrasound, one can call destroying, polishing, and crushing. It was anticipated that
inerton waves would act on specimens in a similar manner. A power source of inerton
waves is the Earth: any mechanical fluctuations in the Earth should generate
corresponding inerton wiaves. Two q/pes of inerton flows one can set off in the
terrestrial globe. The first flow is caused by the proper rotation of the Earth. Let A be a
point on the Earth surface from which an inerûon wave is radiaæd. If the inerton wave
travels around the globe along the West-East line, its front will pass a distance Lr :

2æReu,rr, per circle. The second flow spreads along the terrestrial diameter; such inerton
waves radiated from A will come back passing distance Lz:4Rs.rh. The ratio is

Lr/Lz: n 12. (37)

tf in point A we locate a material object which linear sizes (along the West-East line and
perpendicular to the Earth surface) satisry rehtion 37,we will receive a resonator of the
Earth inerton waves.

We have studied specimens (razor blades) put inûo the resonator for several weeks.
By using the scanning elecfion microscope, in fact, we have established difference in
the fine morphological sructure of cutting edge of tlrc raz.or blades while the
morphologically more course structure remains well preserved.

Note that the Earth inerton field is also the principal mover that launched rather
fantastic quanûrm chemical physical processes in Egypt pyramids, Krasnoholovets
(2001b), power plants ofthe ancients that has recently been proved by Dunn (1998).

3. Just recently, the inerton concept has been justified in the experiment on the
searching for hydrogen atoms clustering in the ô-KIOyHIO3 crystal, Krasnoholovets et
al. (2001). It has been assumed that vibrating atoms should induce the inerton field
within the crystal. This in tum should change the paired potential of interatomic
interaction. Taking into account such a possible alteration in the potential, we have
calculaæd the number of hydrogen atoms in a cluster and predicted its properties. Then
the crystal has been investigated by using the Bruker FT IR spectrometer in the 400 to
4000 cm-t spectral range. Features observed in the spectra unambiguously have been
interpreted just as clustering of hydrogen atoms.

6 Concluding Remarks

Thus, we have uncovered that the interpretation of quantum mechanics in the
framework of the double solution theory indeed is possible. However, the theory
presented is distinguished from de Broglie's (1987), which he actively developed
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seeking for the solution of deterministic interpretation of the problem. The major point
ofthe given concept is an original cellular construction ofa real space, the introduction
of notions of the particle, mass, and elementary excitations of the space. The mechanics
constructed is based on the Lagrangians 16 and 23, equations of motion, and solutions
1o them, 17-22. The Lagrangians explicitly include elementary excitations of the space,
which accompany a moving particle and directly interact with the particle. ïre main
peculiarities of the mechanics called submicroscopic quantum (or wave) mechanics are
the free path lengths for the particle )" and its inerton cloud Â and, because ofthag the
mechanics is similar to the kinetics theory. The particle velocity v0 is connected with l,
by relation vo: VT where 1/T is the frequency of the particle collisions with the inerton
cloud (and ll2T : v is the frequency of the particle oscillation along its path). Since the
motion of the particle is of oscillating nature, it permits the construction of the
Hamiltonian-Jacobi equation 25 and the obtaining the minimum increment of the
particle action within the period v-r that is identifred with Planck's constant h. This
allows one to derive the principal quantum mechanical relations 1 and then construct the
Schrôdinger and Dirac formalisms.

Submicroscopic quantum mechanics has solved the spin problern reducing it to
special intrinsic pulsations of a moving particle. As a result, an additional correction
(positive or negalive) is introduced to the particle's Hamiltonian transforming it to a
matrix form that in its turn has provided the reliable background to the Dirac's
linearization of the classical relativistic Hamiltonian.

Inertons are treated as a substructure of the matter waves and yet inertons
surrounding moving particles are identified with carriers of inert properties of the
particles. The inerton concept also determines the boundaries of employment of the
wave y-function and spinor formalisms reducing the boundaries to the range covered by
inerton cloud amplitude A of the particle studied.

At last, inertons, which widely manifest themselves in numerous experiments, can
be treated as a basis for anticipation in physical systems becausejust inertons represent
those inner properties to which Dubois (2000a,b) referred constructing anticipation as
actually embedded in the systems.

Further studies need widening the scope of applying of quantum mechanics. In
particular, one could apply inertons to the problem ofquantum gravity because inertons
are shown to be real carriers ofgravitational interaction. Bounias (2002) hasjust found
other application of inertons, namely, to biological systems: the availability of the
inerton wave function of an object allowed him to construct the Flamiltonian of living
organism considering it as an anticipatory operator ofevolution.
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