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Abstract
During software evolution, the next state to be reached by the system, can be an
unknown situation that could have unwillingness effects over the evolutionary process.
Additionally, the modifications suffered by a Software System may affect the structure
or the way of use of that structure. In order to avoid undesired effects, changes must be
known by the system. The knowledge of the futwe states moves us to consider these
systems as Incursive Discrete Strong Anticipatory Systems. As well, the evolution has
hyperincursive characters because there exists several possibilities of modification,
before selecting the next state.. As a consequence we have a non directed evolutionary
process in order to obtain a correct and adequate evolutionary sequence for the system.
This process is also not hazardous, but under the modeller free will.
Keywords: Hyperincursion, incursion, anticipation, software evolution, system.

I Introduction

We can define the state vector S(t) of a Software System by three variables:
processing structure, entry structure and memory. Besides, the Software System
evolutionary framework that is supposed to be adequate cannot be random, but based in
the knowledge of the future changes to be performed.
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This implies that the state vector at time 1+l (after a modification) must be
dependent on the following components:
l) The current state vector S(t) at time t,
2) The nodification (the modeller knows what is the modification to be produced) and
3) The state vector S(t+l) at time t+l .

According to this perspective, a Software System can be considered as an
Incursive Discrete Anticipatory System, as have been pointed previously [Torres-
Carbonell and Parets-Llorca , 20011.

In addition, the modeller is the manager of the software development process
and consequently is the decision-maker in the evolutionary process. This capacity to
make decisions means the capacity to choose amongst multiple potential future states of
the Software System from current state. This capaclty of selection is a very important
characteristic of the modelling process and implies a potentiality of the modeller which
can be considered as free will. Also, according to the characteristics of the system and
the modeller the system could reach several possible states during the evolutionary
process. All these possibilities collapse on one unique stat€ that will be the next state of
the system. This multiplicity of possibilities and the selection of one particular staûe
amongst the set of potential states define Hyperincursive AnticiEatory System.

Furthermore, Software Systems is unpredictable before the selection, due to the
multiplicity of future possible states.

Finally, all these modifications are performed by the modeller. Additionally the
modeller influences at each step of the evolution of the system, in order to direct,
redirect, change or eliminate any evolutionary action yet performed or to be performed.
The role of the modeller in the modelling system is always very important even if we do
not mention itcontinuously in further sections.

The paper is organized as follows. First of all in Section 2 introduce our concept
ofSystem definition and in Section 3 system hierarchy is presented. Section 4 discusses
briefly Software System evolution and presents its formal elernents. In Section 5 we
present the incursive character of Software Systems evolution defined in terms of the
previous formal elements. A presentation of the hyperincursive character of Software
System is introduced in Section 6, together with the introduction of the concepts of
Unpredictable Hyperincursive Anticipation and Altemative Hyperincursion. Finally,
Section 7 gather the corrclusion and firture work.

2 System Definition

For us, following [Parets-Llorca, 1995] and [Parets et al., 1994A, 19948, 19961,
a Software System (SS) is a set of processors that interact between them and with the
environment, in such a way that the whole Software System could be viewed as a
processor from the functional point of view. Furthennore, the functionality of a
Software System as an object is reached by the processors that belong to it, through the
activation of theirs actions.

Parets-Llorca [1995] proposes a representation of Software Systems using
concepts from the General System Theory [Le Moigne, l9TTlprocessors, environments,



systems, actions, events and decisions. This structure use a historical representation of
the functioning (System Functional History) and a historical representation of the
structure (System Structural History). [Parets-Llorca, 1995) introduces the concept of
Software Metasystem (MS): a System that allows the interaction between the Software
System and the Development System, and he propose the definition of the Software
System from three different points of view: structural, functional and evolutionary.

2.1 Structural Definition of a Software System

The elements of the basic structure of a Software System are the followings
(Figure l):

Definition. Structure oIa Software Sltstem. The structural composition of a
Software System is:

SOFTWARE SYSTEM: (rA, IE, Pi, H, SD, SG)
l. Action Inlerface (AI): Using this interface messages and functional actions

pass to and from de System (the SS and the MS). This is the way ro
communicate with the System's.lzn ct ional environment.

2. Ewtlution Inter/àce EI): Through this interface structural actions and
messages related to them pass to and from the System. Actions and messages
come from the Metasystem to the Software System, and from the Modeller
to the Metasystem (the development environment).

3. Processing Structure'. Set of processors that work within the system,
performing actions.

4. System Functional Historv 6FH): Memory of the functional actions,
represented by functional events, performed by the System or its processors.

5. System Structurul Historv (SSH): Memory of the structural actions developed
over the system, represented by structural events.
System Decisional Hisktry' 6SH1: Memory of the decisional actions
developed over the system, represented by decisional events.
Decision Subsystem (DSl: Processors that take decisions about the actions
performed by the System
Genetic Subsystem (GS): Processor that take decision about the evolutionary
actions.
I.- AS : Adaptatton Subsystem.

Processor of the Genetic Subsystem that make the decision about
adaptive actions, either if this actions affect the structure or not

2.- IS: Inherftance Subsystem.
Processor of the Genetic Subsystem that make the decision about
producing new Software Systems.

The main functional characteristics of this structure are [Parets-Llorca, 1995A]:
1. The actions follow a StimulusÆlaboration/Response pattern based on the

biological analogy. Software System is stimulated by a stimulus event that is
stored in its SFH. This event will fire, through the Decision Subsystem, the
actions of the involved processors.
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2. Every functional events (mainly stimulus and response events) are stored in
the SFH.

3. Decisions are made using stored events of the SFFI, and having into account
the history ofprevious decisions.

4. The processors of a system work in parallel.
Processors and systems are isomorphic, and this implies that a processor can be

substihrted bv a Software Svstem.
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2.2 Functional Definition of a Software System

From our point of view, a Software System is a set of processors that interact
between them and with the environment. The SS is also a processor from the functional
point of view. So, the functionality of the SS as an object is attained by the
contributions of the processors, through the activation of thein actions, having into
account the history ofthe system and de action conditions.

Actions are related to events that symbolise them. These events are symbols of
the execution of actions and are recorded in the history of the System. [Anaya et al.,
19961 proposed that the functionality of a System is determined by:

L Spontaneous actions performed by the System's processors when the
established conditons are satisfied according to the Decision Subsystem.

2. Execution of actions required by the environment through the Action
Interface.

3. Execution ofactions started by l) and 2).
The functional structure of a Software System is the following:



Dertnition I S:tstem Functionality. The System Functionality is defined as SF
aPs, ES, M) where PS is the processing structure, ES is the entry structure and M is
the system memory, s.t. (such that):

System Functionality: (PS, ES, M)
PS : {P I P is a processor for the System}

P: { AS I AS is an action in rhe System}
ES: {AS I AS is an action of the System Interface}

This definition allows that the System behaves as a processor, and so it
can replace a processor. we could say that the ES of a system is a
processor.
AS: (fecr, Conditions)

fecr: Activity Function.
Conditions: established over the activity function.

M: memory of the System: (SFH, SSH, SDH)
SFH = sequence of stimulus hap'pened over the ES and events of the PS.
Represents the sequence of actions performed througùr time, i.e- the
functionol stare ofthe System.
SSH : sequence of structural events that correspond to functional events
of the Metasystem. Represent the structural state of the System.
IIDS : sequence ofdecision events previous, during and at the end ofthe
actions. Represent the decisional state of the System.

Following [Parets-Llorc41995], we think that a Metasystem, which is part of
the development system, exists. Its main function is to perform changes in the structure
of the Software System. The Software System and the Metasystem are isomorphic, that
is to say, they have both the same structure, and the Functional History of the
Metasystem records its functional actions. This implies that the Structural History of the
System is a subset of the Functional History of the Metasystem.

Both Software System and Metasystem can perform several adaptations
following the same models. In the rest of the paper w€ will use the term System to
include Softuare Systems and Metasystems, unless we make an explicit distinction.

2.3. Evolutionary Defïnition of a Software System

The evolutionary structure of a Software System, according to [Parets-Llorca,
19951the following:

Dertrition. Evolutionarv Defuition of a sqftware system. The evolutionary
description of a Software System is:

SOFTWARE SYSTEM: (SS, SG,IE, HS)
where:

t S,S.' a SoJtware System, as has been described
ii. GS: Genetic Subsystem

A processor of the system with the following subsystems:
1.-IS: Inheritance Subsystem, a processor of the system that carries
thefollowing actions:



- ProducesnewSS.
- Produces adaptations with structural changes.

2.-AS: Adaptation Subsystem, a processor of the system that perform the
following actions:

- Produces adaptations without structural changes.
iii. EI: an evolutionary interface.

Composed by the actions of the GS.
iv. SH: System History.

1. SSH: a structural history that records the events produced by the
actions of the GS and the stimulus of these actions.

2. SFH: a functional history that records the events produced by the
actions of the SS and the stimulus of these actions.

3. SDH: a decisional history that records events produced when
making decisions of the SS and the stimulus related to these
actions.

The evolutionary description is fully acfive in the Metasystem, because its
Inheritance Subsystem make decision about the production of new Software Systems
and about the adaptations that produce stnrctural modifications.

3. System Hierarchy

We can think on a Software System as a processor. So, every processor can be
substituted by a system, and every system can perform as a processor of other system.

Using the graphical symbols from Morin, the relation between Software System
and processoç can be represented in a circular way:

SYSTEM PROCESSOR

This relation implies the existence of an isomorphism between system and
processors, and neither the system nor the processor is more complex.

The traditional architecture of a Software System establishes two different
hierarchy:

l. Tlte contol hierarchy that establishes hierarchical dependency of the
modules ofthe system.

2. The hierarchy of the structure andtbefurrctionality,thal divide the functions
to be performed hierarchically.

In our proposal, the interaction between processors allows the construction of
systems in which the control is not hierarchical, but the functionality is hierarchical, that
is, the action of a system is a construction made from the actions of the processor of that
system.

ln order to approach the hierarchical character of Software Systems. We can
think about a system like the one of the Figure 2. In this system we can identify
SystemsÆrocessors that gather others Systems/Processor, that is to say, we could think



on Pi being a program that has â coûlpoll€rt, P;;,
has Piir as sub-subprogram.

that is a subprogram, and which also
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Fig. 2. Hierarchy of 51.

This set of programs (Pj, P,i, P;*) can undergo an evolutionary process in which
there could be different modifications:

- Suppression ofa component. In Figure 3 suppression ofP:.
- Creation of a component. In Figure 4 creation of P+.
- Modification of a component. For example, modification of p2

Suppression ofP2 + Creation ofnew P2.
Having into account this hierarchical relationships, the evolûion of Pr could be,

for example, the following:
p,, -ù pr,*t This modification implies:

P,,t -+ p,,t*t (modificationofpll)
prz, __f przt*t (modification of p12)
PI.,t .---..* P,at*t (modification of P13;

These modifications suppose that inside each sub-program modification, that is
to say, moving from Plf to Pif*t, there are creaton, suppression and modification of
instructions, moving from the current set of instructions to the new one:

{f}  _+ {I ,*r}
The consequence of the hierarchy is the following:
- The modeller defines first the global nex step of the Software System:

(Pi' -+ Pi'*t)'
To go ahead with the modifications he will look then to the sub-programs:

(Piit -+ pijt*')

Then he look into the instructions, what is a local approtch:
({r,} _+ {f*'})

- The modifications are made in the reverse sense, that is. from iocal
(instructions) to global (Software System).



Fig. 3. Suppression of P3. Fig.4. Creation of P+.

4 Software Systems Evolution

Software Systems are complex conceptual artefacts that gather together sets,
relationships and compound components. These systems evolve, exists within an
evolutionary context, and maintain a complex interaction with it, in such a way that
their behaviour is not absolutely and certainly set up.

The evolution of Software Systems, consequence of their interaction with the
environment (both at the developing and the functioning stages of the process), could be
seen as the performed modifications of the system at one of the following lifecycle
phases:

l. Modifications during the development process.
From the conception of a Software System to its implementation, a series of
changes are produced. They are needed in order to obtain a software product
that works under the proposed restrictions and specifications. These
modifications are approached using methods and development tools that
allow the modeller to enjoy a certain degree of flexibility in order to
assimilate the continuous changes, see fbr example [Boehm, 1986; Jacobson,
Booch and Rumbaugh, 19991.

2. Modifications during the life of the system.
2. l. Software maintenance.

Thgse changes are traditionally considered as a consequence of three
different requirements: l) System adaptation to changing environmental
conditions; 2) Addition of new capacities not envisioned in the system
development phase; 3) Repairing of weaknesses, deficiencies or errors
detected during the functioning of the system. Usually, these changes are
approached using software developing techniques that allow modularity and
reuse as [Booch, Rumbaugh and Jacobson, 1999].

2.2. Software function selÊadaptation
Changes derived from foreseen modifications of the Software System as a
consequence of the functioning activity. Such modifications are intemal to
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the system and involve the improvement of operation by means of algorithm
adaptation and parameter modifications. These changes are usually
approached using local adapation techniques, such as neural networks or
genetic programming Koza, 1992; Holland, 197 5f.

This classification of Software System changes, which would be ageed by most
software engineers, higblights two important questions not considered in traditional
Software Engineering research:

l. The ad-hoc treatrnent of each kind of change by ad-hoc tools and
approaches. In fact, the fields ofknowledge and research involved in each
tyry of change have no relationships. Consider, for instance, ttutt
modifications incurred in the development process are separated from
software maintenance, and that selÊadaptation is not a usual topic in
Software Engineering.

2. The absence of global models of evolution that unit, different types of
change in a unique and comprehensive framework.

4.1 Needed Evolution

With these necessities in mind, we identified the kind of evolution necessary for
Software Sysûems. As we have exposed in [Torres-Carbonell and Parets-Llorca, 2A0l],
Software Systems evolution can not rely on hazardous processes. This impossibility
comes from the necessity of the system to assure the modifications to be performed
during the evolutionary process. These modifications should be conducted in order to
preserve certain invariants which avoid the problems that could come out as a
oonsequence ofthe non adaptive chamcter ofmost random changes.

- Design of new functionality by the Modeller.
- Taking into account the necessities.
- The Modeller knows the modifications to be performed.

This proposal tries to establish an evolutionary framework in which all the
changes produced are necessary, in such a way that there is no useless effort. This kind
ofuseless effort could appear when hazardous changes are allowed, because most of
these changes are not necessary or not absolutely suitable.

Additionally, and in order to perform adequate modifications, the following
knowledge is necessary:

o Former states of the system. This knowledge of the history of the Software
System is necessary to act accuately and to avoid the repetition of enors.

o The future state of the system, that is to say, the result of the evolutionary
modification.

1 1



. The parameters to be modified, that reflect in deail what the changes to be
performed are.

4.2 Formal Elements of Software Systems Evolution

In order to approach Software Systems evolution, we propose the following
formal elements:

'  St l

Current structure of the Software System, composed by:
PS1: Processing Structure of $.
ES1: Entry Structure of St.
lv[: Memory of the system $.

t $p-r:
Stage k of the structure St.

. Sr+l l

Next structure of the Software System, composed by:
PSt+r : Processing Structure of St*r.
ESr+r : Entry Sfructure of St*r.
Mt+r : Memory of the System St+r.

o OSt_tlt_r<+rl

@rator that changes the stage (structure plus way of use of that structure) Sa_r
into the stage Sqt_r+r, without modification of the structure $ of the Software
System.

. OS,t*l:
Operator that modifies the structure St of the Software System, yielding the new
structure St+r.
The relationships between these elements are shown in Figure 5.
This formalisation establishes the existence, during the life of the Software

System, of different structures and different uses of those structwes, consequence of the
aiplication of operators that modify the structure (OS,t*t) and operators that modiff the
stage (05r-16_r*r). So, the evolution of the Software System could imply:

1. The modification of the current structure $, , producing the new structure
Sr+r, after OS,t*t is applied.

2. The modification of the current stage Sqt r, producing the new stage SqLr,
after the operator OSt_r6_r.+r is applied, without structural modifications.

According to this proposal, an evolutionary process can exist within the current
structure, just moving from one stage to another, that is b *y, by the modification of
the use ofthat structure.

5 Incursion and Formal Elements

As stated in a previous work [Tones-Carbonell and Parets-Llorca, 2001], we
consider Software Systems as Incursive Discrete Strong Anticipatory Systems (IDSAS),
according to the reasons explained below.

t2



o Sr: Previous structure of the Software System.
o SrF o: Initial stage of the structure S,.
o OSt_611_1 i Operator that transform the stage S41_o into Srp_r.
. S1t_r: Stage t_l of the structure ù.
o OS1_11ç: Operator that transform the stage $[_r into Sqç.
. OSt_n-rtr_n: Operator that transform the stage Sq_o-r into S4_,.
o Stp_': Stage t_n of the structure St.
o OSrt*t: Operatorthattransformthe structure 51 into Ss+1.
o Sr+rt Next structure of the Software System.
. Sr+llr+l_0: Initial stage of the structure Sr*r.
. OSt+r_olt+1_1: Operator that transform the stage St+llr+l_o into St+rlr+r_r.
o St+rtr+r_rt Stage t+l_1 of the structure Sr+r.
o OSr+r_rlr+1_2: Operator that transform the stage S,*rl,*r_t into St+rlr+l z.
e OSt+r_n-llr+r_r: Operator that transform the stage St+l[+l_n-r into Sr+rlr+l_n.
. S,*lp*r_n: Stage t+l_n of the structure Sr+r.

Fig.5: Formal Elements of Software Sy$em Evolution

Following Dubois [2000], we adop his definition of an Incursive Discrete
Strong Anticipatory System: an incursive discrete system is a system which computes
its current state at time t, as a frrnction of its states at past times, ..., t-3,t-2, t-1, present
time, t, and even its states at future times t+1, t+2,t+3,..., that is to say:

x(t  +1)= A(. . . ,x(t  -2),x(t  - I ) ,x(t) ,x(t  +1);p) ( l )
In the framework of Software System, we can similarly write:
S,*,  =M(.. . ,S,_r,5,_r,S,,S,*, ;OS) (2)

t 3



.., srz,

s,
Sr-t

o,s

Are the previous states of the Software System known
through the Memory of the system (M).
Is the actual state of the Software System.
Is the next state of the Software System, the state at the
following evolutionary instant.
Is the parameter that indicates the evolutionary
modifications to be performed.

The relationships between the elements of this definition and the formal
elements of Software System evolution previously stated, are shown in the following
table.

Table 1: IDSAS, lncursive Discrete Strong Anticipatory System, and the formalization
ofthe evoluti models

IDSAS Formalization of the evolutionary models
x(0) So

x(1) S r

x(t-l) St-t

x(t) S'
*i1+l) St+t

D OS,''':

Additionally, we think that an evolutionary Software System has deterministic
characteristics but not predictable. This inesolution implies serious limitations in the
availability of future situation knowledge. These limitations refer to the states t+2, t+3,
... (not to state t+l) because they are u priori unknown states, and therefore it is
impossible to foreseen the evolutionary course of the Software System.

The knowledge of the state 1+l depends on the evolutionary modification that
must be performed according to the desire of the modeller. Then the evolutionary course
will be influenced and usually conducted, by the design of the modeller and the
necessities of the environment.

Having these concepts in mind, we can identi$ the following evolutionary
influences (Figure 6):

o The modeller acts on (has influence over) the evolutionary development of the
Software System.

. The new system characteristics, x(t+l), produced using x(t) are influenced by
the system history (M) that helps to know former states and their
characteristics (x(t-l), x(t-2), ... )

o The new state is also influenced by the characteristics of its new
configuration. This characteristics are known by the modeller and are a
consequence of the knowledge of the necessary modification, p, to be
performed.

l4



Krowledge about SFr tltrough tlE
Operatm O,*r to be applied

Fig.6: IDSAS andthe formalization ofevolutionary models

Consequently, a Software System can be considered as an Incursive Discrete
Sfong Anticipatory System, subjecæd to the following considerations:
1. The initial situation of a Software System (state x(0), structure Ss), during its

development can be considered the first idea of the modeller or the user about the
system, the starting point of the development. During the functional life of the
system, the initial state can be considered as the moment when the system is
released to the environment.

2. The modcller and is environment have an important role in the request and
achievement of the modifications.
The necessary modifications, given by the parameter p, are also known during each
step of the evolutionary process. Because the modeller knows the necessary change,
it depends on his desigrr.
The new situation of the Software System is a consequence of the modification that
will be performed. This new situation is the following stat€ of the structure, St+r,
after a structural change from Sr to $*r, in the evolutionary process.
The new situation represents the future Software System. This new situation is the
final state on each evolutionary step. Only the next situation is known, because the
conditions of the environment and the desigr of the modeller are subjected to
changes during the life of the system, and will change in the future.
At each evolutionary step the following situation of the system is the only one that is
possible according to the system behaviour and the modeller design. Then, this is
the rmique final state known within each evolutionary step.
The state vector at time t*1, $+r, will be the set composed by PSt+r, ESt+r, Mt+r &t
that moment of the time. Its composition depends upon the characteristics acquired
during the life of the system.

4.

6.

7.
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6 Hyperincursive Character of Software Systems

A Hyperincursive Discrete Anticipatory System, according to the definition
from [Dubois and Resconi, 19921, is an Incursive Discrete Anticipatory System that
produce several iærations at each time step.

Under this definition we can understand that the condition of hyperincursion
consist on the characteristics of incursion presented by the system, although with
multiple solutions.

Dubois exposes in [2000, p.29]:
"Karl Pribarm asked me (by erail, arter CASYS'99 conference):
How can an anticipatory hyperincursive system be modelled without a future
defined goal?.
A Hyperincursive Anticipatory System generates multiple potential states at
each time step and conesponds to one-to-nany relations. A selection parameter
must be defined to select a p$ticulaf state amongst these multiple potential
states. These multiple potential states collapse to one state (amongst these
states) which becomes the actual state".
This point of view from Dubois, could be understood as the exisûence of a

"double step" (Figure 7) in order to select the actual state:
l. The first one implies the production of multiple possible states at each

incursion, that is, at each time moment the future state of the system is
anticipated and there are many possibilities. So, a Hyperincursive Discrete
Anticipatory System produces a series ofpotential states.

2. These multiple states will ake part in a "second turn" that deals with the
selection of the next state at which the system will be between all the
potential states. The selection parameter allows the selection of one of those
potential states.

Fig. 7: Software System as HDAS. The actual state selection

lst step: generation
ofpossible states

1 6



When refening to Software System, it must be noticed that the future state; St+r,
depends on past states, present state and the future state, because this state $+r is one of
the set of potential PS_St*r_i (Figure 4).

lst step: generatron
ofpossible states

PS_S|*t_l

PS_S,*I 2

2nd step: selection
ofnext state

Fig. 8: Behaviour of a Software Syskm as HDAS

From this point of view, this Software System behaves like an Hyperincursive
Discrete Anticipatory System (Figure 8), with the following characteristics:

I . From the Software System initial state, 51, a set of potential states is obtained
for the following instant of the evolutionary process (PS_St+r-r, PS_St+r_2, ...,
PS_ St+r_n), according to the set of selection parameters that must be taken
into account
The concrete evolutionary action that will be applied, producing a sûuctural
change, is not known a priori. Then, multiple potential adaptations and
structural changes can be produced.

2. Through the selection parameter (operator OS,t*t) the following evolutionary
state is chosen, it will be the next state St+r.
This suppose that the system behaves as
Anticipatory System, because all the possible
one that will produce the selected next state.
Additionally, the collapse produce the stage
modification from St to St+r.

Schematically, the relationship that exists between the concepts of
Hyperincursive Discrete Anticipatory System and the proposed formal models could be
gathered as follows (Table 2):

a Hyperincursive Discrete
adaptations collapse in only

Sr+rh+t o after the structural

T7



Table 2: IIDAS and the formalization of the evol
Formalization of the evolutionary models

PotentialState_1

PotentialState n

Collaoses to a concrete state: the

Using the above proposed formalization of evolutionary systems, the reached
next stat€, S1a1, cân be expressed as an incursive function as follows:

Sr+r : F(...,Sr-:, St-t, S,l PS- Sr.r*t, ..., PS- St+r-nl Pl sP) Q)
where:
..., St-2, Sr-t

are the structures reached by the Software System during its evolutionary
history and are known through the memory of the system (M).

$ is the structure of the system that exists before the evolutionary process.
PS- Sr*r_r, ..., PS- Sr*t_n

are the multiple reachable states, as initial stage when structure St+r will
be reached.

p are op€rators that modit/ the structure: Ort*I.
sp collapses into a concrete state: the stage Sr+rlr*r o.

6.1 Unpredictable Hyperincu rsive Anticipation

The description of the Software System evolutionary characteristics as
Hyperincursive Discrete Anticipatory Systems, gives the possibility of understanding
hyperincursion as the fact that a system can have characteristics of incursion with
multiples possible solutions, or multiple future possible states, what could be called
Unpredictable Hyperincursive Anticipation.

Consequently, the multiplicity has a certain degree of unpredictability when the
following state of the evolutionary sequence have to be established. The new state
produced is not the unique possible state. Nevertheless, after the modification it will be
considered the current stage (St*rtt*r_s) of the next evolutionary step after the change of
structure from St to St*r.

This unpredictability of the evolutionary phenomenon is produced by the
impossibility of establishing a priori what modification will be necessary at each
moment. This modification will depend on the design of the modeller, the conditions of
the environment, the new requirements, etc. On the other hand, it has also been pointed
out that when a structural modifications happens, Software System moves from
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structure St to structure Sr+r and specifically to stage St*rlt*l_0, which is, by definition,
the default initial stage when the use of a new structure begins.

The fact that the skge of a new structure (that is, structue and the way of use) is
determined by a default way of use, does not imply that the evolutionary phenomenon is
predictable: the next modification is not known neither the next stage of the system.

6.2 Alternative Hyperincursivity or Ilouble Hyperincursivity

At the moment, we have only mentioned that the evolutionary process consists
on moving from state x(t) to state x(+l), and this change is equivalent to the
transformation from structure St to structure St+r.

Besides, the Software Sysæm evolutionary framework considers:
o On the one hand, the existence of Adaptation by Mutation-Differentiation,

that modifies the structure of the Software System.
. On the other hand, the existence of Adaptation by Accommodation-

Leaming, that doesn't modify the structure but the way the structure is used.
Under this schema" and given a structure of the Software System, an

evolutionary process including only modifications in the way of use of the structure
could be produced.

According to these considerations, and having into account that we consider
Software Systems as Hyperincursive Discrete Anticipatory Systems, we have:
1. Each action based on Mutation-Differentiation implies a structural change, a priori

unknowq from St to fur. In this case the system behaves as a Hyperincursive
Discrete Anticipatory System, because the stnrctural modification produced is one
between the set of possible adaptations.

2. Besides the structural changes, the existence of adaptations by Accommodation-
Learning imply changes in the way of use of the structure, for example from S4t_i to
S,*rt,j*r. In this case the system behaves again as a Hyperincursive Discrete
Anticipatory System, neither in this case is possible to foreseen at each moment
which will be the nex way of use.

3. Then we can consider that a "double turn" is produced: Each new structure
originated by Mutation-Differentiation, produce multiple evolutionary possibilities
by Accommodation-Learning. We can think on the existence of "two nested circles"
in the following way (Figure 9):

a. There exist a ring that is the Main Hyperincursive Discrete Anticiptory
System, that corresponds with a system's structural modifications sequence.
This ring embraces several occunences of:

b. Secondary Hyperincursive Discrete Anticipatory System, that correspond
with the sequence of different way of use of the structure.

This double nesting of a Software System in evolution express that each
adaptation by Mutation-Differentiation allows the system to reach a unique stage
between all the possibilities that exist before the Mutation-Differentiation happens.
Many possible modifications exist and only one of them has happened. Later, within
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that structure and starting at the initial reached stage, an evolutionary process without
structural modifications could happen.
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MHDAS

MHDAS: Main Hyperinorsive Discrete Anticipatory System.
SHDAS I: Secondary Hyperincursive Discrete Anticipatory System_ i.

$: Sbucture $ ofthe Software System.

Srr_r: State Srn_r of the Software System.

Fig.9: Structure, state and stage of Formal Models

7 Conclusion

Our understanding of Software System Evolution is based on a no hazardous
evolutionary process, but certain knowledge about the characteristics ofthe next state is
needed. This knowledge comes from the modeller design as an expression of his free
will and having into account the pressure of the environment. The characteristics of the
evolutionary process followed by a Software System lead us to think on it as an
Incursive Discrete Strong Anticipatory System. As IDSAS the next state is influenced
by the present state and the next state, according to a parameter that indicates the
evolutionary modifications to be performed. Furthermore, Software Systems are
Hyperincursive Systems because during their evolution multiple possible states could be
reache{ although the selection process will collapse in a unique state. This multiplicity
lead us to propose the characteristic of Unpredictable Hyperincursive Anticipation.
Besides, we think on Software Systems as Alternative Hyperincursive or Double



Hyperincursive systems with two nested evolutionary process. This abstract
construction ought to be mapped into concrete specification languages in order to obtain
some profit from it, a work which is being carried out and was initially outlined in
[Tones-Carbonell and Parets-Llorca, 19991.
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