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Abstract
A categorial framework for structured graph based systems with or without distinguished
nodes or labeling on both arcs and nodes is proposed. Requirements for the existence of
limits and colimits in the resulting categories are set. In this context, unrestric'æd and
bicomplete categories of graph based systems such as Petri Nets, Labeled Transition
Systems, Nonsequential Automata, etc., are easily defined. Then it is shown how limits
and colimits can be interpreted as structuring and anticipatory properties of systems. The
proposed framework called duo-internalization generalizes the notion of intemal graphs
allowing that nodes and arc may be objects from different categories. The results about
limits andcolimits of (reflexive) duo-intemal (labeled) graphs (with distinguished nodes)
are, for our knowledge, new.

Keywords. Graph based systems, anticipatory systems, duo-internal graphs, graph
transformation, category theory

I Introduction
Graph based systems such as Petri Nets (Reisig, 1985), Transition Systems (Milner,
1989), Asynchronous Transitions Systems (Bednarczyk, 1988) and Nonsequential
Automata (Menezes & Costa, 1995) are some of the models for concurrency developed
and used in many applications. Several categorial frameworks for graph based systems
have been proposed for expressing the semantics of concurrent systems mainly in the so
called true concurrency approach as in (Meseguer & Montanari, 1990), (Sassone er a/,
1993) and (Menezes et al, 1998).

An important justification (among others) for the use of category theory is that of
structuring, in the sense that most of the graph based systems axe not equipped with
compositional operations. A step toward structuring is provided in (Winskel, 1984) and
(Winskel, 1987) where the categorial constructions of product and coproduct stand for
parallel and nondeterministc composition operation of nets, respectively. In some
categorial graph based systems such as Petri nets and Nonsequential Automata, if an
inital marking/state is added, the resulting category may not have coproducts. Initial
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marking/stâte arc used for defining the operational semantics for concurrent languages
(see, for instance, (Degano et aI, 1988), (Degano & Montanari, 1987), (Winskel, 1984)'

(Olderog, 1987) and (Glabbeek & Vaandrager, 1987)). To solve this problem, some

restrictive solutions where proposed: restrictions on categories and morphisms (Winskel,

1987); restrictions on initial marking/state (Meseguer & Montanari, 1990); simulation of

the coproduct construction using a functorial operation based on fibration technique
(Menezes & Costa, 1996).

However, it may be the case that colimits (or coproducts in special) are needed for

unrestricted graph based systems for any reason. An interesting example is the use of

graph transformation using the so called double pushout approach (Ehrig, 1979). In this

case, graph transformations extended for graph based systems may have several

interpretation such as systems refinement, dynamic specification or anticipation (as

proposed in (Menezes, 1999)) of systems and modeling system behavior (as a token game

in Petri nets).
In this paper we propose a generalized categorial framework for defining structured

graph based systems with or without distinguished nodes or labeling on both arcs and

nodes. In this context, we show some requirements for preserving limits and colimits
properties from the structuring categories. Therefore, wtrestricted and bicompbte

categories of graph based systems such as Petri nets, Transition Systems, Nonsequential

Automata, etc., axe easily defined. Then we show how limits and colimiæ can be

interpreted as structuring and anticipatory properties of systems. The anticipatory
properties are inspired by (Menezes, 1999), but in a different framework.

The proposed framework is based on internal graphs, generalized in order to allow

that nodes and arcs may be objects from different categories. Initially, a (small) graph can

be defined as aquadruple G = (V, T, à9, ô1) where V is a set of nodes, T is a set of arcs

â9, à1: T -+ V :re two functions called source and target which associate for each arc the

corresponding source and target nodes, respectively. As stated in (Conadini, 1990) and
(Aspeni & Longo, l99l) a graph G can be considered as a diagram in the category Set
where V and T are sets and ào and àt are (total) functions. Moreover, graph morphisms

are commutative diagrams in Sef. This means that Se/ plays the role of "universe of

discourse" of the category Gr (of graphs): it is defined internally to the category Set. This

suggests a generalization of graphs as diagrams in an arbitrary universe (base) category.

This approach is known as internalization and can be extended for reflexive graphs and

categories (for categories, see (Corradini, 1990) and (Menezes, 1997)). However, nodes

and arcs may be objects of different categories, provided that there are functors from the

categories of nodes and arcs to the base category. This notion we call duo-internalization.

Graph based systems usually are (strucnrred) graphs with some special features such

as labeling and distinguished nodes. A distinguished node is a node specially identified
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and its interpretation may vary according to the application. For instance, common
interpretations are initial, final, abort or "colored" state/markings. The proposed approach
for distinguished nodes was first sketched in (Menezes, 1995) where an umestricted
bicomplete category of Petri net is introduced (with a set of initial marking, inspired by
(Jonsson, 1990)).

In most cases, labeling of graphs is restricted to arcs. However, it *ight be the ca.se
that labeling must be both, on arcs and nodes. In this case, it is expected that labeling on

arcs should preserve labeling on source and target nodes. Therefore, labeling can be seen
as a graph-morphism where the source graph is the "shape" and the target one are the
"labels of arcs and nodes" (as in (Menezes, 1994)).

For all categories of (reflexive) duo-inærnal graphs with/without labeling or
distinguished nodes inEoduced, conditions for the existence of limits and colimits arc set.
The results about duo-internalization are, for our knowledge, new.

2 Internal Graphs
The Category of Internal Graphs is defined using the notions of comma category and
diagonal functor. In this context, we show that the properties about limits and colimits of
the base category are inheriæd by the category of internal graphs. As expected, using this
result, the category of (small) graphs is bicomplete.

Definition I I-etC be a category. Ttre Diagonal Fwtctor M: C + C2 is such that
sends each C-object A to the G-object (A, A) and sends each C-morphism f: A -r B to
the C€-morphism (f, f): (A, A) -+ (8, B). D

Propositbn 2 l*t0 be a caægory. Consider the diagonal functor M: C + C2. Then:
a) lf C has all binary products, then Âg preserves colimits;
b) If C has all bitta.y coproducts, then Àg preserves limits.

Proof:
a) If C has all binary products, then the functor Tl: C2 + C (induced by the product

construction)suchthat sends each Cz-object (A, B) the C-object AxB and sends
each C2:morphism (f, g) to the C-morphism f xg uniquely induced by the product in

C, is right adjoint to Â61 (Mac Lane, 1971). Therefore, Â6rpreserves colimits;
b) If C has all binary coproducts, then the functor JL: C2 + C (induced by the

coproduct) suchthatsends each G-object (A, B) to the C-object A+B and sends
each C2-morphism (f, g) to the C-morphism f +g uniquely induced by the coproduct
in C, is left adjoint to Â6r (Mac Lzne,l97l). Therefore, Â6: preserves limits. tr

Definitbn 3 Letf: A + C and g.' B + C be functors. Tlrc Comma CategoryfJg is

such that (Fig. 1):



Fig. 1: Comma category

a) Anobjectis atriple S = (A,f, B)whereAis anA-object, Bis aB-objectandf:/A +
gB is a C-morphism;

b) A morphism is a pair h = (ha, hg): (Ar, ft, Bt) + (Az, tz, 82) where h4: A1 + A2
is aA-morphism and hg: 81 + Bz is aB-morphism such thatghg o \ =l2o fhl

c) Theidentitymorphismof anobjectS =(A,f, B)istg=(t4: A+4, tB: B+ B)
d) The composition of two morphisms f = (fA, fg): Sr + 52 and 9 = (gR, gg): 52 -)

53 is g r f = (gA 'fA, gB 'fe): Sr + Ss tr

Proposition 4 l.et f: A + C and g: B -+ C be functors. Then:
a) If A, B are complete and g preserves limits then the conuna category fJg is

compleûe;
b) If A, B are cocomplete and/preserves colimits then the comna categoryfJg is

cocomplete.
Proofi See, for instance, (Casley, 1991). O

Definition5 L.et C be a (base) category.Tlte Category of Intemal Graplu wer C,
denoted by Gr(C),is the commacategory ^CJ^c. O

Therefore, an intemal graph over C can be seen ils quadruple G = C/, T, ô0, ât)
where V, T are C+bjects and ô0, ôt: T + V are C-morphisms. An intemal graph

morphism h = (hv, hr): (Vr, T1, âg1, ôtr) -r N2,T2, ôoz, ât) where hy: V1 -r V2
and h1: T1 -+ T2 are C-morphisms such that the diagrams in Fig. 2 commute.

Remolc 6 Thc category of graphs Gr is the category of internal graphs Gr{Set). tr

Proposition 7 l.et C be a category. Then:
a) If C is complete, thenGr(C) is complete;
b) If C is cocomplete; tben Gr{C) is cocomplete.
Proof: Since Gr{C) is the comma category Ac J ^c and since Ag preserves limits and
colimits, Gr(O is bicomplete. tr
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Fig.2: Commutative diagrams for morphisms between internal graphs

Proposition 8 The category of graphs Gr = Q719"11 is bicomplete.
Proof: Since Sel is bicomplete , Gr{Set) is bicomplete.

3 Duo-Internal Graphs
Duo-internal graphs allow the definition of a special kind of graphs where nodes and arcs
may be objects from different categories. They are defined over internal graphs provided
that there are functors from the categories of nodes and arcs to the base category. In a
graph, the source and target morphisms are taken from the base category. In this context,
limits and colimits of categories of duo.intemal graphs are inherited from the categories of
nodes and arcs.

Definition9 l*tCbea(base)category andu.'V-+Cand t: T + C be functors. The
Category of DuoJnternal Graphs denoted by Gr(v, /), is the conuna category
L c  t J l g , u  f , t

Therefore, aGr(v, t)-oblect G is a quadruple G = (V, T, âg, â1) where V is a
V-object, T is a ?-object and ôg, â1: fT -> uV are C-morphisms and a Gr{u, t)-
morphism h = (hv, h1): (V1, T, à61, ôtr) + (Vz, T, ôoz, à1a) where hy: V1 + V2 is a
V-morphism and hî T1 + T2 is a ?-morphism, such that the diagrams in Fig. 3
cornmute.

Rema* I0 The category of (small) graphs Gr is Gr(idgst, ids"ù and the category of
internal graphs Gr(O is Gr{idc, idd.

Proposition l1 Let u.' V -r C and t: T + C be functors. Then:
a) lf V,?are complete and u preserves limits then Gr{v, t) is complete;
b) If V, ? are cocomplete and t preserves colimits then Gr(u, /) is cocomplete.
Ploof: Since Gr(q t) is the conrma category LC. tlÂg -. u, the proof is
corollary.

a direct

û
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Fig. 3: Commutative diagrams for duo-internal graphs
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Fig.4: Commutative diagrams for duo-internal reflexive graphs

4 Duo-fnternal Reflexive Graphs
The category of duo-intemal reflexive graphs is just an extension of the category of duo-
internal graphs where, for each node, the identity morphism is a morphism in the base
category. In this context, the properties about limits and colimits are also inherited from
the categories of nodes and arcs. Using the results about duo-internal reflexive graphs it is
straightforward to verify that the category of (small) reflexive graphs is bicomplete.

Definition12 l-etCbea(base)categoryand u.'V + C and/.'?+ C be functors.
Then:
a) A duo-internal reflexive graph is a quadruple G = (V, T, à0, â1, t) where U, T, à0,

ât) is a Gr{u, t)-object and r: uV + f T is a C-morphism such that the diagram in
Fig.4 (left) commutes;

b) A morphism between duo-internal reflexive graphs h = (hv, h1): (V1 , T, ôot, ât r, tt )
+(Yz, T, à92, àtz,tùisaGr(v, t)-morphismsuchthatthediagraminFig.4 (right)

commutes:
c) Duo-intemal reflexive graphs and the corresponding morphisms constitute the

Category of Duo-Internal Reflexive Graphs, denoted by RGr(v, A. tr

Remt* 13 The category of (small) reflexive graphs .BGr is RGr{idset, ids"ù and the
category of intemal reflexive graphs .BGr{C) is RGr{idc, idd. û

Proposition 14 Let u.' y + C and t: T -+ C be functors. Then:
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Fig.5: Morphisms uniquely induced by the product

a) If V and ? are compleæ and u preserves limits then J? Gr{u , t) is complete ;
b) If Vand ?are cocomplete and t preserves colmits thenBGr(u, /l is cocomplete.
Proof: I-etu: RGr(u, t) + Gr(v, t) be a functor such that, for each RG{v, f)-object,
G = (V, T, âg, â1, t), u G = (/, T, à0, àt) and for each RGr{u, f)-morphism h = (hv,
hr): Gr +Gz,uh =(hV, h1): zG1 -+uG2. Sincez isafaithtulfunctor, (ft,Gr{u, t),
z ) is concrete category over Gr{u, t) (Adr4mek et al, 1990). Suppose that V, ? are
complete (cocomplete), u preserves limits (f preserves colimits). Then Gr(u, fJ is
complete (cocomplete). Therefore, to prove thæ RGr{u, tJ is compleæ (cocomplete) we
have just to prove that the for each.BGr(u, tl-diagram D the limit (colimig D in Gr(v, t)
can be lifted as a initial source (frna! sink) n RGr(v, tJ. Suppose I a family of indexes,
ie I and ke {0, 1}. For simplicity, in what follows, we omit that ie I and ke t0, 1}.

Lifting productr. Iæt {Gi = (Vi, Ti, âoi, à1;, t;)} be an indexed family of RGr{u, f)-objects
andXuG; = Q(V;, XI;, Xô9;, Xà1;) ttre conespondingGr{u, t)-product together with

{n;: XuG;-+ z G;}. Then, XGi = ()O/i, XT;, Xâ9;, Xâ1;, Xq), together with {æ;: XG;
- Gi) is an initial source of {Gi} where Xq is uniquely induced by the product
construction as illustrated in Fig. 5. Then:
a) To prove that XG; is a duo-internal reflexive graph it is enough to prove that the

external diagram in Fig. 5 commutes. In fact, Xidy; is the unique C-morphism such
that @ commutes. Since O, @ and @ commute, fryi. Xidy' = idy; -,ny, =

àk, or i  o?tVi =àki oæTi oXl i  =f iy;  oXô1; ' rXt i .Therefore,bytheuniquenessof

Xidy;in @, Xidy; = Xàki', Xti;
b) To prove that XG; (together with {æ;}) is an initial source, consider a RGr(u,

t)-source (G, tfi: G + Gù ). Since Xz G; is a product in Gr(u, t), therc is an unique
Gr(u, t)-morphism h: uG -> Xz Gi such that, li = nu}io h. The lifting of h is h.

)cv
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Fig.6: Morphisms uniquely induced by the equalizers

Lifting equalizers. Consider theRGr{v, t)-objects G1 = (V1, T1, âor, â1r, t1), G2 =
(Yz,Tz, ôoe, ô1a, r2), the RGr(u, t)-morphisms f1 = (v1, tr), fz - (vz, td: G1 + G2
andthecorrespondingGr(v, t)-equalizer (ey, e1):(V, T, â0, âr) + zGt. ThenG=
(V, T, â0, ôt, t) together with e = (€v, e1): G -+ G1 is an initial source in RGr(v, t),
where t is uniquely induced by the C-equalizers, as illusEated in Fig. 6. The proof
showing that G together with e is an initial source is analogous to the proof for products.

The lifting of coproducts and coequalizers are analogous to the lifting of products and
equalizers, respectively. B

Proposition I5 The category of reflexive graphs RGr is bicomplete.
Proof: SinceRGr isRGr{idgst, ids"t), Set is bicomplete andidget trivially preserves
limits and colimits,.BGr is bicomplete. O

Proposition 16 læt C be a category. Then:
a) If C is complete, thenBGr{C) is complete;
b) If C is cocomplete , then RGr(C) is cocomplete.
Proof: Since.BGr{Cl is RGr{idc, idç) nd ldg triviaily preserves limits and colimits,
if C is complete (cocomplete) RGr(C) is complete (cocomplete). O

5 Duo-Internal Graphs with Distinguished Nodes
The internalization approach is generalized for duo-internal (reflexive) graphs with
distinguished nodes. The generalization can be both for the domain catÊgory of the
(distinguished) nodes and for the category where the nodes ale matched. In this context,
the requirements for the bicompleteness of categories of duo-iniemal (reflexive) graphs
with distinguished nodes are set. As expected, the results about limits and colimits for
(small) graphs and inæmal graphs with distinguished nodes are just special cases. The
proposed approach is analogous for duo-intemal graphs and duo-internal reflexive
graphs. Therefore, in what follows, G(u, t) denotes Gr{v, t) or RGr(u, t).
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Fig.7: Commutative diagram for graphs with distinguished nodes

Definition 17 The Category of Duo-Internal (Reflexive) Graphs with Distinguished
Nodes is the comma category Gafu, t) = d lnod.es wbere d.: D -+ A is a functor where
D is the domain category of distinguished nodes and A is the (targeg category where the
distinguished nodes are matched andnodes = c u: G(u, t) + A is a functor such that:
a) u: G(v, t) - C is a forgetful functor that sends each Qv, t)-object to its

corresponding nodes in C and eæh Qu, tJ-morphism h = (hV, h1) to the
C-morphism u hy;

b) c: C -+ A is a functor that relates the base category of graphs with the category that
matches the distinguished nodes. D
Therefore, aGdu, t)-object M is a triple M = (D, d, G), where G is a &u, t)-graph,

D is a D-object denoting the distinguished nodes and d: dD -t nodesG is a
A-morphism that matches the distinguished nodes in G. A Gafu, t)-morphism is a pair
(hç, h9): (Dr, dr, Gr) + (Dz, dz, G2) where (hy, h1): Gr -+ Gr is a G(v, t)-
morphism and hp: Dt -r D1 is a D-morphism, such that the diagram in Fig. 7
cornmutes.

Proposition 18 Let d: D + A and c: C -> Abe functors. Consider the category G4fu,
t). Then:
a) Limits for graphs. Suppose that G6(v, t) = Grd(u, t). If C and D are complete, c

preserves limits and C has initial object, thenGdfu, /) is complete;
b) Limitsfor reflexive graphs. Suppose thatGafu, t) = RGrafu, t).lf C and D are

complete and c preserves limits, then G4(v, t) is complete;
c) Colimits.If C and D are cocomplete and d preserves colimits, then Gafu, t) is

cocomplete.
Proof: Since G4fu, t) is the category d, I rndes where nodes = c :' r) , we have just to
prove that the v: G{u, t) - C preserves limits. Case I'. for Gafu, t) = Grafu, t),
consider the C-initial object 0 and the functor g.' C -> Gra(v, t) such that for eacb C-
object u V,g t u V is the graph (V, 0, !, l). Case 2: for Ga(u, t) = RGra(u, /), consider
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the functorg; C -s Gr6fu, t) such that for each C-object u V, g ' u V is the graph (V, V,

iduv, iduv, idpy). For both cases, is easy to show that, g is left adjoint to u. tr

6 Duo-Internal Labeled Graphs

Usually, the labeling of graphs is restricted to :ucs and thus, the approach could be similar

to the one for distinguished nodes. However, it might be the case that labeling must be

both, on arcs and nodes. In this case, it may be expected that labeling for each arc should

prcserve the labeling of corresponding source and target nodes. In this context, labeling

can be seen as a graph-morphism where the source graph represents the "shape" and the

target one represents the "labels" (of arcs and nodes). Again, the requirements for the

bicompleteness of categories of duo-internal graphs with labeling are set. The approach is

analogous for duo-intemal graphs and duo-intemal reflexive graphs with and without

distinguished nodes. Therefore, in what follows, G(u, t) denotes Gr(u, t), RGr{v, t),

Grdfu, t) andRGra(v, t).

Definition 19 The Category of Dw-lnternal l^qbebd Graphs is the comma category

LG(shape, lab) = shapellab where shape: Gbs, t) -> G(u, t), Iab: I-a.b +

G(u, t) are functors, G(ur, tJ is the category of "shapes" and I'ab is the category of

"labels".E

Therefore, aLG(shape,Iab)-oblectisatriple N = (G, lab, L), where G is agraph

in G(us, f/ representing the "shape",L is a La,b-object representing the "labels" and lab:

shapeG + labL is a graph morphism in G(u, t) corresponding to the labeling. A

LG(shape, lob)-morphismis (h6, h1): (G1, lab1, L1) -r (Gz, lab2, L2) such that

labhy, labl  = lab2 .  shapehç.

Proposition21 lrtshape: G(vs, tJ -+ G(u, t),lab: La.b + G(u, t) be functors.

Then:
a) If G(us, tJ, Lab are complete and lab preserves limits then LGGhape, lab) is

complete;
b) If G(us, tJ, Lab are cocompleæ and shape preserves colimits then LG(shape,

lab) is cocomplete.
Proof: Since ZG(sh ape, lab) = shape.f lob, ttre proof is a direct corollary. B

7 Some Categories of Models for Concurrency Based on

Graphs
Using duo-internal graphs, categories of Labeled Transition Systems, Petri Nets and

Nonsequential Automata are easily defined and the verification of the existence of limits

and colimits arc straightforward (the proofs are omitæd - they are direct corollary of
previous results).
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7.1 Labeled Transition Systems

A labeled fransition system is basically a graph with an initial state and labeling on arcs.
The conesponding category of duo-intemal graph is bicomplete. However, while the
coproduct construction can be interpreted as a choice between component systems, the
product construction defines a kind of "toal syncbronization" with little practical
applications. A more useful category can be obtained using refledve graphs. Since
labeling is restricted to axcs, the target object of a labeling morphism is a reflexive one
node graph. In this case, a notion of "encapsulation" of transitions can be defined. In
what follows, Set' denotes the category of poinæd sets (sets with a distinguished
elemen$ and pointed functions (the distinguished element is preserved by morphisms)
which is bicomplete. In fact, Set' is isomorphic to the category of one node reflexive
graphs.

kfinition2,l Consider:
a) The calegory of reflexive graphs RGr(u', id.s"t) srch that u'.' Set' + Set is ttre

obvious forgetful functor;
b) The identity funcror shd.pe: RGr{u', idgr) + RGr(u', idsuù;
c) The "inclusion" functor lab: Set' -> RGr{Set) where each pointed set L1 is taken

into the corresponding one node reflexive graph ({.}, Lt, !, !, t) (isomorphic to L1)
such that 1e) is a pointed set, !: z'Lr -) u'{o} is the unique function and r: u'{.} -+

a'Ç takes the unique element of {r} into the distinguished element t e L1.
Then, the Category of Reflexive l"abeled Trmsitions Systems is the category of duo-
intemal graphs.L?S = LRGr(shape,lnb). tr

Therefore, the shape of a transitions system is a reflexive graph and labeling is over an
one node reflexive graph (labetng on nodes is not required). A transition of the shape
labeledbyt(theidentitytransition of the one node reflexive graph) can be considered as
an encapsulated tansition. Note that all identity transitions of the shape are labeled by t
(usually, an identity transition in a transition system means "no operation" and they are
encapsulated). The initial state of a transitions system is the distinguished element of the
point set ofnodes and therefore, we did not have to use the notion of distinguished nodes
defined for duo-internal graphs.

Propositian 22 The Category of Reflexive l2beled Transitions Systems Z?S is
bicomplete. B

Exænple23 In LTS, the product and coproduct constructions can be interpreted as
choice and parallel composition (all possible combination of component transitions -

ûansition systems are sequential systems) as illusftated in Fig. 8 where an initial state is
identified by an arrow without a source node. For simplicity, the label t of the identity
transitions is omitted.
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Fig.8: LTS - coproduct and product

7.2 Petri Nets

To define a Petri net as a graph we follow the approach in (Meseguer & Montanari,
1990), where nodes are elements of a commutative monoid. In this case. nodes and arcs
stand for states and transitions of a net, respectively, where for each transition, n tokens
consumed or produced in a place A is represented by nA and n; tokens consumed or
produced simultaneously in a place A1 with i ranging over 1,..., p is represented by
n1A1 O n2A2 e ... @ npAp where @ is the monoidal operation. Therefore, a Petri net is
basically a graph with a monoidal structure on nodes and the corresponding category of
duo-intemal graph is bicomplete. However, while the coproduct construction can be
interpreted as an ,rsynchronous compositions of component systems, the product
construction defines a kind of "total synchronization" with little practical applications
(analogous to the non-reflexive labeled transitions systems). A more useful category can
be obtained assuming that arcs are elements of a poinæd set.

If an initial marking is added to the net structure, the resulting category do not have
coproduct (Winskel, 1987). If an initial marking has at most one token in each place, the
resulting category of nets have coproducts (Meseguer & Montanari, 1990). However the
coproduct construction reflects a kind of "total choice" composition with resticæd
applications (Menezes & Costa, 1996). If a marked Petri net has a sef of initial markings
(the choice of which initial marking is considered at run time is a nondeterminism -
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\..------ M1 *M2 j

Fig.9: Market Pointed Petri Nets - coproduct and product

(Menezes, 1995) then the resulting category is bicomplete and the coproduct construction
reflects an asynchronous composition of nets.

Note that a Petri net has no labeling (in its standard definition). In what follows
CMon denotes the category of commutative monoids which is bicomplete.

Definition 24
a) Consider the obvious forgetful functor u: CMon + Set'and the identity functor

ids"f: Set' + Se/'. The Category of Pointed Peti Nets is the category of duo-
internal graphs Petri = Gr(u, idseù;

b) Consider the functor nodes: Petri + Sef'. The Category of Marked Pointed Petri
Nefs is the category of duo-internal graphs MPetri = Gr;4s",{u, idS"ù. O

Proposition 25 The categories Petri and MPetri are bicomplete. tr

Exonple 26 Consider the Fig. 9 and the following symbols for tokens (and the
corresponding initiat markings) :

OA qX O  X @ Y @  A @ X O AOXOY

Then for the nets M1 and M2:
a) Coproduo. The resulting nets puts "side by side" the component nets with {4, X,

X(EY) as the set of initial markings;
b) Product. The resulting nets reflects the parallel composition and has {4, X, XOY,

AOX, AOX(EY) as the set of initial markings. D

Remo* 27 In (Menezes & Costa, 1996), a functorial operation for synchronization of
nets is given, defined for transitions calling and sharing. It is defined using the fibration
technique. The synchronization operation erases from the parallel composition (categorial
product) of given pointed nets all those ransition which do not reflect the given
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synchonization specification. The approach can be extended for labeled transitions
systems and nonsequential automata. tr

Remo* 28 The approach proposed for Marked Petri Nets can easily be extended for
several sets of distinguished markings. For instance:
a) Initiat and Ffuat Markings. Consider the functor lL: (Sef')2 + Set'induced by ttre

coproduct construction in Set'. Then, Gr y(u, idsrù is the category of Pointed Petri
Nets with Initial and Final Markings;

b) Colored Markings. Colored markings generalizes the definition above. Consider the
categories Hue,Color = (Se[')Hue and the functor paint: Color + Set'induced
by the coproduct constructions reflecting the combination of colors. Then,
Grpaindu, idS"9 is the category of Pointed Colored Petri Nets. tl

7.3 Nonsequential Automata

Nonsequential automata (Menezes & Costa, 1995) constitute a categorial semantic domain
of processes around the concepts of sate and transition. It is inspired by (Meseguer &
Montanari, 1990) and consists of a reflexive graph with monoidal structure on both,
states and transitions, initial and final states and labeling on transitions. The interpretation
of a structured state is the same as in Petri nets: it is viewed as a "bag" of local states
representing a notion of tokens to be consumed or produced. A structured transition is a
way to specify that the component transitions are independent, i.e., structured transitions
speciff which component transitions are concrurent of which as in (Bednarczyk, 1988) or
(Mazurkiewicz, 1994). Nonsequential automata where introduced in order to achieve the
diagonal compositionality requirement, i.e., reifications (implementations) compose and
distribute over parallel composition. Reification is a special kind of net morphism were
the target object is enriched with all conceivable sequential and concurrent computations.

Note that the following definition is analogous to the category LTS, replacing Se/ by
CMon. Also, the approach for initial and final state are similar to the one introduced for
Petri nets with initial and final markings.

kfinitian29 Consider:
a) The category of reflexive graphs internal to CMon where the distinguished nodes

have a monoidal (commutative) strucnre RGr y(CMon) such that ll: CMonZ ->

CMon is the functor induced by the coproduct construction in CMon;
b) The obvious forgetful functor shape: RGr y(CMon) + RGr{CMon);
c) The *inclusion" functor lab: CMon + RGr(CMonJ where each comrnutative

monoid Lt (t is the unity) is taken into the corresponding one node reflexive graph
internal to CMon (1, L", !, !, t) such that 1 is a fixed zero object (the only element of
the support is the unity) and !: Ç + 1, t: 1 -+ L1 are the unique morphisms.
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Fig. 10: Double pushout approach for transfornration of graph-based systems

Then, the Category of Nonsequcntial Aunmatu is the category of duo-internal graphs
NAut = LÙGr{shape,Iab). El

Propositian j0 The Category of Nonsequential AutomataNAut is bicomplete. tr

In (Menezes & Costa, 1995) it is shown that the category of Pointed Petri Nets is
isomorphic to a (neither wide nor full) subcategory of Nonsequential Automata, i.e., Petri
nets constitute a special case of nonsequential automata.

I Anticipatory Systems
In (Menezes, 1999) we proposed an anticipation mechanism based on graph
transformatons, using the so called single pushour approach (Lôwe, 1993) on a category
of nets with partial morphisms. In this context, a graph transformation stands for a
possible system anticipation (Dubois, 1998), (Rosen, 1985) In this paper we show a
similar approach using the so called double pushout approach (Ehrig, 1979) extended for
Petri nets viewed as graphs with total morphisms. The generalization for labeled transition
systems and nonsequential automata can be easily obtained using the above results.

For the double pushout approach (see Fig. 10) consider the net N to be transformed,
the rule (left, right) (a pair of morphisms where left usually is a monomorphism) which
specifies how the transformation should be done and the morphism redex (usually a
monomorphism) which instantiates the part to be replaced in the original net N. The
pushout complement O determines the net N' and then the pushout @ determines the
transformed net M. The transformed net M is a possible system anticipation of N
according to the given rule (left, right) and instantiation redex. Therefore, based on
(Menezes 1999), the specification of an anticipatory system is a grammar finf = (R, N)
where R is a collections rules and N is a MPetri-object called inital net (assume that
instantiations are all possible monomorphisms between corresponding nets). Note that a
partial morphism r: L + R can be seen as pair of (total) morphisms (left: D + L, right: D

89



a 
lett

ô
vo

transformation4

Fig. 11: Anticipation of a net

+ R) where left is a monomorphism and D is the "domain" of r (in fact r is a class of

equivalence of pair of morphisms). This view shows thar ùe approach using the double
pushout in this paper is very close to the single pushout with partial mo5phisms in
(Menezes, 1999). However, they are not isomorphic (the discussion of this topic is not a
goal of this paper).

F-xanple3l In the Fig. 11, consider the net Orig to be transformed, the rule (!eft,

right) which specifies the replacement (the ûansition a is replaced by trursitions a1 and
â2, the conesponding source and target states are preserved, the marking A is forgotæn
and the marking 28 is introduced) and the monomorphism redex which instantiaæs the
part to be replaced in the original net. The pushout complennnt O deærmines the net

Compl and then the pushout @ determines the ransformed net Antic. This example
illustrates a rcplacement of a transition (a possible sysûem anticipation or sysûem

refinement) and also a replacement of a marking (also a possible systrem anticipation or
modeling of a token game such as the firing of transitions). D
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9 Conclusion
We construct a categorial framework for graph based systems. The concepts of duo-
internal (reflexive/non-reflexive ) graphs, with/without distinguished nodes and labeling
on both arcs and nodes is proposed. The requirements for the existence of limits and
colimits inherited from the component categories is set. In this context we show how
bicomplete categories of Marked Petri Nets, Labeled Transitions systems and
Nonsequential Automata are defined. Also, we discuss the existence of colimits in
categories of Petri nets equipped with initial markings (which is not usual) where the
interpretation of coproducts and pushouts are adequate for giving semantics for
concurrent, anticipatory systems. A double pushout approach for graph transformation is
proposed as a mechanism for systems anticipations. In this case, the specification of an
anticipatory system is a graph grarnmar extended for nets. Using the proposed duo-
internal graph approach, the generalizatron of the graph transformation for other graph
based systems such as labeled transitions systems or nonsequential automata are
straightforward.

Cunently we are developing a similar approach for categories (duo-internal
categories), generalizing the notion of intemal categories. Using adjunction between duo-
internal graphs and duo-internal categories we will be able to express computations of
graph based systems. Note that, enriching (reflexive) graphs with a special notion of
transitive closure (able to express sequential and nonsequential computations) we get a
category. Also, in this context, we will be able to express reifications (implementations)
where a transition is mapped into a (possible complex) transaction. Therefore, a system
reification is just a duo-internal graph morphism where the target graph is enriched with
its computations.

In the near future, we plan to extend the notions of internalization and duo-
internalization for partial graphs, generalizing previous work in (Menezes, 1999).
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