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Abstract

A categorial framework for structured graph based systems with or without distinguished
nodes or labeling on both arcs and nodes is proposed. Requirements for the existence of
limits and colimits in the resulting categories are set. In this context, unrestricted and
bicomplete categories of graph based systems such as Petri Nets, Labeled Transition
Systems, Nonsequential Automata, etc., are easily defined. Then it is shown how limits
and colimits can be interpreted as structuring and anticipatory properties of systems. The
proposed framework called duo-internalization generalizes the notion of internal graphs
allowing that nodes and arc may be objects from different categories. The results about
limits and colimits of (reflexive) duo-internal (labeled) graphs (with distinguished nodes)
are, for our knowledge, new.

Keywords. Graph based systems, anticipatory systems, duo-internal graphs, graph
transformation, category theory

1 Introduction

Graph based systems such as Petri Nets (Reisig, 1985), Transition Systems (Milner,
1989), Asynchronous Transitions Systems (Bednarczyk, 1988) and Nonsequential
Automata (Menezes & Costa, 1995) are some of the models for concurrency developed
and used in many applications. Several categorial frameworks for graph based systems
have been proposed for expressing the semantics of concurrent systems mainly in the so
called true concurrency approach as in (Meseguer & Montanari, 1990), (Sassone et al,
1993) and (Menezes et al, 1998).

An important justification (among others) for the use of category theory is that of
structuring, in the sense that most of the graph based systems are not equipped with
compositional operations. A step toward structuring is provided in (Winskel, 1984) and
(Winskel, 1987) where the categorial constructions of product and coproduct stand for
parallel and nondeterministic composition operation of nets, respectively. In some
categorial graph based systems such as Petri nets and Nonsequential Automata, if an
initial marking/state is added, the resulting category may not have coproducts. Initial
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marking/state are used for defining the operational semantics for concurrent languages
(see, for instance, (Degano et al, 1988), (Degano & Montanari, 1987), (Winskel, 1984),
(Olderog, 1987) and (Glabbeek & Vaandrager, 1987)). To solve this problem, some
restrictive solutions where proposed: restrictions on categories and morphisms (Winskel,
1987); restrictions on initial marking/state (Meseguer & Montanari, 1990); simulation of
the coproduct construction using a functorial operation based on fibration technique
(Menezes & Costa, 1996).

| However, it may be the case that colimits (or coproducts in special) are needed for
unrestricted graph based systems for any reason. An interesting example is the use of
graph transformation using the so called double pushout approach (Ehrig, 1979). In this
case, graph transformations extended for graph based systems may have several
interpretation such as systems refinement, dynamic specification or anticipation (as
proposed in (Menezes, 1999)) of systems and modeling system behavior (as a token game

In this paper we propose a generalized categorial framework for defining structured
graph based systems with or without distinguished nodes or labeling on both arcs and
nodes. In this context, we show some requirements for preserving limits and colimits
properties from the structuring categories. Therefore, unrestricted and bicomplete
categories of graph based systems such as Petri nets, Transition Systems, Nonsequential
Automata, etc., are easily defined. Then we show how limits and colimits can be
interpreted as structuring and anticipatory properties of systems. The anticipatory
properties are inspired by (Menezes, 1999), but in a different framework.

The proposed framework is based on internal graphs, generalized in order to allow
that nodes and arcs may be objects from different categories. Initially, a (small) graph can
be defined as a quadruple G = (V, T, dg, d1) where V is a set of nodes, T is a set of arcs
dg, 91: T = V are two functions called source and target which associate for each arc the
corresponding source and target nodes, respectively. As stated in (Corradini, 1990) and
(Asperti & Longo, 1991) a graph G can be considered as a diagram in the category Set
where V and T are sets and dg and 01 are (total) functions. Moreover, graph morphisms
are commutative diagrams in Se¢. This means that Set plays the role of "universe of
| discourse" of the category Gr (of graphs): it is defined internally to the category Set. This
| suggests a generalization of graphs as diagrams in an arbitrary universe (base) category.

This approach is known as infernalization and can be extended for reflexive graphs and
| categories (for categories, see (Corradini, 1990) and (Menezes, 1997)). However, nodes
and arcs may be objects of different categories, provided that there are functors from the
categories of nodes and arcs to the base category. This notion we call duo-internalization.

Graph based systems usually are (structured) graphs with some special features such
as labeling and distinguished nodes. A distinguished node is a node specially identified

|
|
|
|
\
in Petri nets).
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and its interpretation may vary according to the application. For instance, common
interpretations are initial, final, abort or “colored” state/markings. The proposed approach
for distinguished nodes was first sketched in (Menezes, 1995) where an unrestricted
bicomplete category of Petri net is introduced (with a set of initial marking, inspired by
(Jonsson, 1990)).

In most cases, labeling of graphs is restricted to arcs. However, it might be the case
that labeling must be both, on arcs and nodes. In this case, it is expected that labeling on
arcs should preserve labeling on source and target nodes. Therefore, labeling can be seen
as a graph-morphism where the source graph is the “shape” and the target one are the
“labels of arcs and nodes” (as in (Menezes, 1994)).

For all categories of (reflexive) duo-internal graphs with/without labeling or
distinguished nodes introduced, conditions for the existence of limits and colimits are set.
The results about duo-internalization are, for our knowledge, new.

2 Internal Graphs

The Category of Internal Graphs is defined using the notions of comma category and
diagonal functor. In this context, we show that the properties about limits and colimits of
the base category are inherited by the category of internal graphs. As expected, using this
result, the category of (small) graphs is bicomplete.

Definition 1 Let C be a category. The Diagonal Functor Ac: C — C2 is such that
sends each C-object A to the C2-object (A, A) and sends each C-morphism f: A — B to
the C2-morphism (f, f): (A, A) — (B, B). a
Proposition2  Let C be a category. Consider the diagonai functor Ac: C — C2. Then:
a) If C has all binary products, then A¢ preserves colimits;

b) If C has all binary coproducts, then Ac preserves limits.

Proof:

a) If C has all binary products, then the functor T: C2 — C (induced by the product
construction) such that sends each C2-object (A, B) the C-object AxB and sends
each C2-morphism (f, g) to the C-morphism f x g uniquely induced by the product in
C, is right adjoint to Ac (Mac Lane, 1971). Therefore, Ac preserves colimits;

b) If C has all binary coproducts, then the functor ll: C2 — C (induced by the
coproduct) such that sends each C2-object (A, B) to the C-object A+B and sends
each C2-morphism (f, g) to the C-morphism f+ g uniquely induced by the coproduct
in C, is left adjoint to Ac (Mac Lane, 1971). Therefore, Ac preserves limits. 0

Definition3 Letf: A — C and g: B — C be functors. The Comma Category fl g is
such that (Fig. 1): )
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Fig. 1: Comma category

a) An object is a triple S = (A, f, B) where A is an A-object, B is a B-object and f: fA —
g B is a C-morphism;

b) A morphism is a pair h = (ha, hg): (A1, f1, B1) = (A2, fa, B2) where ha: A1 — Az
is a A-morphism and hg: By — By is a B-morphism such that ghg © f1 = f2 © fha

¢) The identity morphism of an object S = (A, f, B)isig={(taA:A—> A, 18: B> B)

d) The composition of two morphisms f = (fa, fg): S1 — S2 and g = (ga, gB): S2 —
Sazisg-f=(ga-fa, gB°fB): S1 > S3 Q

Proposition4  Letf: A — C and g: B — C be functors. Then:

a) If A, B are complete and g preserves limits then the comma category flg is
complete;

b) If A, B are cocomplete and f preserves colimits then the comma category flg is
cocomplete.

Proof: See, for instance, (Casley, 1991). Q

Definition 5 Let C be a (base) category. The Category of Internal Graphs over C,
denoted by Gr(C), is the comma category Ac 4 Ac. Q

Therefore, an internal graph over C can be seen as quadruple G = (V, T, dp, 91)
where V, T are C-objects and dg, d1: T — V are C-morphisms. An internal graph
morphism h = ¢hy, ht): (V1, T4, doy, 911) = (V2, T2, doy, d1,) wWhere hy: V4 — V2
and ht: T1 = T2 are C-morphisms such that the diagrams in Fig. 2 commute.

Remark 6  The category of graphs Gr is the category of internal graphs Gr(Set). Q

Proposition7  Let C be a category. Then:

a) If C is complete, then Gr(C) is complete;

b) If C is cocomplete, then Gr(C) is cocomplete.

Proof: Since Gr(C) is the comma category Ac 4 Ac and since A¢ preserves limits and
colimits, Gr(C) is bicomplete. Q
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Fig. 2: Commutative diagrams for morphisms between internal graphs

Proposition 8  The category of graphs Gr = Gr(Set) is bicomplete.
Proof: Since Set is bicomplete, Gr(Set) is bicomplete. )

3 Duo-Internal Graphs

Duo-internal graphs allow the definition of a special kind of graphs where nodes and arcs
may be objects from different categories. They are defined over internal graphs provided
that there are functors from the categories of nodes and arcs to the base category. In a
graph, the source and target morphisms are taken from the base category. In this context,
limits and colimits of categories of duo-internal graphs are inherited from the categories of
nodes and arcs.

Definition 9  Let C be a (base) category andv: V — C and ¢ T'— C be functors. The

Category of Duo-Internal Graphs denoted by Gr(v, t), is the comma category

Ac tlac v a
Therefore, a Gr(v, t)-object G is a quadruple G = (V, T, dg, d1) where V is a

V-object, T is a T-object and dqg, d1: ¢t T — vV are C-morphisms and a Gr(v, t)-

morphism h = ¢hy, h1): (V1, T, 94, d14) = (V2, T, doy, d1,) where hy: V1 — Vo is a

V-morphism and ht: Ty = T2 is a T-morphism, such that the diagrams in Fig. 3

commute.

Remark 10 The category of (small) graphs Gr is Gr(idge;, idget) and the category of

internal graphs Gr(C) is Gr(idc, idg). Q

Proposition 11 Letv: V — C and t: T — C be functors. Then:

a) IfV, T are complete and v preserves limits then Gr(v, t) is complete;

b) IfV, T are cocomplete and ¢ preserves colimits then Gr(v, t) is cocomplete.

Proof: Since Gr(v, t) is the comma category Ac - t{Ac v, the proof is a direct

corollary. a
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Fig. 3: Commutative diagrams for duo-internal graphs
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Fig. 4: Commutative diagrams for duo-internal reflexive graphs

The category of duo-internal reflexive graphs is just an extension of the category of duo-
internal graphs where, for each node, the identity morphism is a morphism in the base
category. In this context, the properties about limits and colimits are also inherited from
the categories of nodes and arcs. Using the results about duo-internal reflexive graphs it is
straightforward to verify that the category of (small) reflexive graphs is bicomplete.

Definition 12 Let C be a (base) category and v: V — C and ¢: T — C be functors.
Then:
a) A duo-internal reflexive graph is a quadruple G = (V, T, dg, 91, 1) where (V, T, do,
d1) is a Gr(v, t)-object and 1: vV — £ T is a C-morphism such that the diagram in
| Fig. 4 (left) commutes;
b) A morphism between duo-internal reflexive graphs h = (hy, ht): (V1, T, doy, 911, 11)
| — (V2, T, doy, 915, 12) is a Gr(v, t)-morphism such that the diagram in Fig. 4 (right)
commutes;
| c) Duo-internal reflexive graphs and the corresponding morphisms constitute the
Category of Duo-Internal Reflexive Graphs, denoted by RGr(v, t). Q

Remark 13 The category of (small) reflexive graphs RGr is RGr(idget, idset) and the
category of internal reflexive graphs RGr(C) is RGr(idc, id¢). Q

\
\
4 | Duo-Internal Reflexive Graphs
\
\
\
\

Proposition 14 Letv: V — Cand t: T — C be functors. Then:
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Fig. 5: Morphisms uniquely induced by the product

a) If Vand T are complete and v preserves limits then RGr(v, ¢) is complete;

b) If Vand T are cocomplete and ¢ preserves colimits then RGr(v, t) is cocomplete.
Proof: Letu: RGr(v, t) = Gr(v, t) be a functor such that, for each RGr(v, t)-object,
G=(V,T,0g,01, 1), uG =(V, T, dg, 91) and for each RGr(v, ¢)-morphism h = ¢hy,
ht): G1 = Ga, u h = (hy, hT): u G1 = u Ga. Since u is a faithful functor, (RGr(v, t),
u ) is concrete category over Gr(v, t) (Adamek et al, 1990). Suppose that V, T are
complete (cocomplete), v preserves limits (¢ preserves colimits). Then Gr(v, t) is
complete (cocomplete). Therefore, to prove that RGr(v, t) is complete (cocomplete) we
have just to prove that the for each RGr(v, t)-diagram D the limit (colimit) D in Gr(v, ¢)
can be lifted as a initial source (final sink) in RGr(v, t). Suppose | a family of indexes,
i€ | and ke {0, 1}. For simplicity, in what follows, we omit thatie | and ke {0, 1}.

Lifting products. Let {Gj = (Vi, Ti, dg;, 91;, 1i)} be an indexed family of RGr(v, ?)-objects
and Xu Gj = (XVj, XTj, Xdg,, X01;) the corresponding Gr(v, t)-product together with
{mi: Xu Gj - u Gj}. Then, XGj = (XV;, XTj, Xag;, Xd1;, Xu), together with {m;: XGi
— Gj} is an initial source of {Gj} where Xi; is uniquely induced by the product
construction as illustrated in Fig. 5. Then:

a) To prove that XGj is a duo-internal reflexive graph it is enough to prove that the
external diagram in Fig. 5 commutes. In fact, Xidy; is the unique C-morphism such
that @ commutes. Since @, @ and @ commute, my; > Xidy; = idy; ° Ty; =
dk; © 1j © Ty; = dk; © T, © X = my; © Xdk; @ Xuj. Therefore, by the uniqueness of
Xidy; in @, Xidy; = X, > Xui;

b) To prove that XG;j (together with {m;}) is an initial source, consider a RGr(v,
t)-source (G, {fi: G — Gij}). Since Xu G;j is a product in Gr(v, t), there is an unique
Gr(v, t)-morphism h: u G — Xu Gj such that, fj = n,G; © h. The lifting of h is h.
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(V2, T2, 302, 015, 12), the RGr(v, t)-morphisms f1 = (vq, t1), f2 = {vo, t2): G4 - G2

and the corresponding Gr(v, t)-equalizer (ey, et): (V, T, do, d1) > © G1. Then G =
(V, T, do, 91, 1) together with & = (ey, eT): G — Gq is an initial source in RGr(v, t),

where 1 is uniquely induced by the C-equalizers, as illustrated in Fig. 6. The proof
equalizers, respectively.

showing that G together with e is an initial source is analogous to the proof for products.

The lifting of coproducts and coequalizers are analogous to the lifting of products and
limits and colimits, RGr is bicomplete.

Proposition 15  The category of reflexive graphs RGr is bicomplete.

Proposition 16  Let C be a category. Then:

a
a) If C is complete, then RGr(C) is complete;

Proof: Since RGr is RGr(idget, idset), Set is bicomplete and idge; trivially preserves
5

b) If C is cocomplete, then RGr(C) is cocomplete.

Qa
if C is complete (cocomplete) RGr(C) is complete (cocomplete).

‘ ; vVo
| ﬁvvz
| —_——
—_—— gy VD
| Vo
|
|
‘ Fig. 6: Morphisms uniquely induced by the equalizers
| Lifting equalizers. Consider the RGr(v, t)-objects G1 = (V1, T4, doy, 911, 11), G2
|
|
|
|
|
|

|

\

Proof: Since RGr(C) is RGr(idc, idc) and id trivially preserves limits and colimits,

a
Duo-Internal Graphs with Distinguished Nodes
The internalization approach is generalized for duo-internal (reflexive) graphs with
distinguished nodes. The generalization can be both for the domain category of the
(distinguished) nodes and for the category where the nodes are matched. In this context,

the requirements for the bicompleteness of categories of duo-internal (reflexive) graphs
with distinguished nodes are set. As expected, the results about limits and colimits for
(small) graphs and internal graphs with distinguished nodes are just special cases. The

proposed approach is analogous for duo-internal graphs and duo-internal reflexive
graphs. Therefore, in what follows, G(v, t) denotes Gr(v, t) or RGr(v, t).
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Fig. 7: Commutative diagram for graphs with distinguished nodes

Definition 17 The Category of Duo-Internal (Reflexive) Graphs with Distinguished

Nodes is the comma category G4(v, t) = d { nodes where d: D — A is a functor where

D is the domain category of distinguished nodes and A is the (target) category where the

distinguished nodes are matched and nodes = ¢ - u: G(v, t) — A is a functor such that:

a) u: G(v, t) - C is a forgetful functor that sends each G(v, ¢)-object to its
corresponding nodes in C and each G(v, t)-morphism h = (hy, hT) to the
C-morphism v hy;

b) c¢: C — A is a functor that relates the base category of graphs with the category that
matches the distinguished nodes. Qo

Therefore, a G4(v, t)-object M is a triple M = (D, d, G), where G is a G(v, t)-graph,
D is a D-object denoting the distinguished nodes and d: dD — nodesG is a
A-morphism that matches the distinguished nodes in G. A Gq(v, #)-morphism is a pair
(ha, hp): (D1, dy, G1) > (D2, d2, Gp) where <hy, ht): G1 = G1 is a G(v, ©)-
morphism and hp: Dy — D4 is a D-morphism, such that the diagram in Fig. 7
commutes.

Proposition 18 Letd: D — A and c: C — A be functors. Consider the category Gg(v,

t). Then:

a) Limits for graphs. Suppose that Gq(v, t) = Grg(v, ¢). If C and D are complete, ¢
preserves limits and C has initial object, then Gg(v, ¢) is complete;

b) Limits for reflexive graphs. Suppose that Gg(v, t) = RGrg(v, t). If C and D are
complete and ¢ preserves limits, then Gg(v, ¢) is complete;

c) Colimits. If C and D are cocomplete and d preserves colimits, then Gg(v, ) is
cocomplete.

Proof: Since G4(v, ¢) is the category d | nodes where nodes = ¢ - v, we have just to

prove that the v: G(v, #) — C preserves limits. Case I: for Gg(v, t) = Grg(v, t),

consider the C-initial object O and the functor g: C — Grg(v, #) such that for each C-

object vV, g - vV is the graph (V, 0, }, 1. Case 2: for Gg4(v, t) = RGrg(v, t), consider
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the functor g: C = Grg(v, t) such that for each C-object vV, g ~ v V is the graph (V, V,
idyv, idyy, idyv). For both cases, is easy to show that, g is left adjoint to v. Q

6 Duo-Internal Labeled Graphs

Usually, the labeling of graphs is restricted to arcs and thus, the approach could be similar
to the one for distinguished nodes. However, it might be the case that labeling must be
both, on arcs and nodes. In this case, it may be expected that labeling for each arc should
preserve the labeling of corresponding source and target nodes. In this context, labeling
can be seen as a graph-morphism where the source graph represents the “shape” and the
target one represents the “labels” (of arcs and nodes). Again, the requirements for the
bicompleteness of categories of duo-internal graphs with labeling are set. The approach is
analogous for duo-internal graphs and duo-internal reflexive graphs with and without
distinguished nodes. Therefore, in what follows, G(v, t) denotes Gr(v, t), RGr(v, t),
Grg(v, t) and RGrg(v, t).

Definition 19 The Category of Duo-Internal Labeled Graphs is the comma category
LG(shape, lab) = shape | lab where shape: G(vs, ts) — G(v, t), lab: Lab —
G(v, t) are functors, G(vs, tg) is the category of “shapes” and Lab is the category of
“labels”.Q

Therefore, a LG(shape, lab)-object is a triple N = (G, lab, L), where G is a graph
in G(vs, ts) representing the “shape”, L is a Lab-object representing the “labels” and lab:
shapeG — labl is a graph morphism in G(v, t) corresponding to the labeling. A

» LG(shape, lab)-morphism is (hg, h.): (G, laby, L1) — (G2, labz, L2) such that

labhy - labq = labp " shape hg.

Proposition 20  Let shape: G(vs, ts) — G(v, t), lab: Lab — G(v, t) be functors.

Then:

a) If G(vg, tg), Lab are complete and lab preserves limits then LG(shape, lab) is
complete;

b) If G(vs, ts), Lab are cocomplete and shape preserves colimits then LG(shape,
lab) is cocomplete. :

Proof: Since LG(shape, lab) = shape | lab, the proof is a direct corollary. Q
7 Some Categories of Models for Concurrency Based on
Graphs

Using duo-internal graphs, categories of Labeled Transition Systems, Petri Nets and
Nonsequential Automata are easily defined and the verification of the existence of limits
and colimits are straightforward (the proofs are omitted - they are direct corollary of
previous results).
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7.1 Labeled Transition Systems

A labeled transition system is basically a graph with an initial state and labeling on arcs.
The corresponding category of duo-internal graph is bicomplete. However, while the
coproduct construction can be interpreted as a choice between component systems, the
product construction defines a kind of “total synchronization” with little practical
applications. A more useful category can be obtained using reflexive graphs. Since
labeling is restricted to arcs, the target object of a labeling morphism is a reflexive one
node graph. In this case, a notion of “encapsulation” of transitions can be defined. In
what follows, Set® denotes the category of pointed sets (sets with a distinguished
element) and pointed functions (the distinguished element is preserved by morphisms)
which is bicomplete. In fact, Set® is isomorphic to the category of one node reflexive
graphs.

|
} Definition 21 Consider:
| a) The category of reflexive graphs RGr(u®, idgey) such that u®: Set® — Set is the
| obvious forgetful functor;
| b) The identity functor shape: RGr(u®, idses) — RGr(u®, idsey);
: ¢) The “inclusion” functor lab: Set* — RGr(Set) where each pointed set L1 is taken
| into the corresponding one node reflexive graph ({¢}, L¢, !, !, 1) (isomorphic to Lr)
| such that {*} is a pointed set, !: #*L; — u*{*} is the unique function and . u*{*} —
: u’Ly takes the unique element of {*} into the distinguished element T € L.

Then, the Category of Reflexive Labeled Transitions Systems is the category of duo-
| internal graphs LTS = LRGr(shape, lab). Q

| Therefore, the shape of a transitions system is a reflexive graph and labeling is over an
one node reflexive graph (labeling on nodes is not required). A transition of the shape
labeled by 7 (the identity transition of the one node reflexive graph) can be considered as
an encapsulated transition. Note that all identity transitions of the shape are labeled by 1
(usually, an identity transition in a transition system means “no operation” and they are
encapsulated). The initial state of a transitions system is the distinguished element of the
point set of nodes and therefore, we did not have to use the notion of distinguished nodes
| defined for duo-internal graphs.

Proposition 22 The Category of Reflexive Labeled Transitions Systems LTS is
bicomplete. a

Example 23 In LTS, the product and coproduct constructions can be interpreted as
choice and parallel composition (all possible combination of component transitions -
transition systems are sequential systems) as illustrated in Fig. 8 where an initial state is
identified by an arrow without a source node. For simplicity, the label T of the identity
transitions is omitted. Q
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Fig. 8: LTS - coproduct and product

7.2 Petri Nets

1

} To define a Petri net as a graph we follow the approach in (Meseguer & Montanari,
| 1990), where nodes are elements of a commutative monoid. In this case, nodes and arcs
} stand for states and transitions of a net, respectively, where for each transition, n tokens
\ consumed or produced in a place A is represented by nA and n; tokens consumed or
; produced simultaneously in a place A;j with i ranging over 1,..., p is represented by
| N1A1©n2A2@ ... ®npAp where @ is the monoidal operation. Therefore, a Petri net is
| basically a graph with a monoidal structure on nodes and the corresponding category of
; duo-internal graph is bicomplete. However, while the coproduct construction can be
| interpreted as an asynchronous compositions of component systems, the product
| construction defines a kind of “total synchronization” with little practical applications
1 (analogous to the non-reflexive labeled transitions systems). A more useful category can
‘ be obtained assuming that arcs are elements of a pointed set.

: If an initial marking is added to the net structure, the resulting category do not have
j coproduct (Winskel, 1987). If an initial marking has at most one token in each place, the
: resulting category of nets have coproducts (Meseguer & Montanari, 1990). However the
| coproduct construction reflects a kind of "total choice” composition with restricted
| applications (Menezes & Costa, 1996). If a marked Petri net has a set of initial markings
: (the choice of which initial marking is considered at run time is a nondeterminism -
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Fig. 9: Market Pointed Petri Nets - coproduct and product

(Menezes, 1995) then the resulting category is bicomplete and the coproduct construction
reflects an asynchronous composition of nets.
Note that a Petri net has no labeling (in its standard definition). In what follows
CMon denotes the category of commutative monoids which is bicomplete.
Definition 24
a) Consider the obvious forgetful functor v: CMon — Set® and the identity functor
idger®: Set® — Set®. The Category of Pointed Petri Nets is the category of duo-
internal graphs Petri = Gr(v, idges®); i
b) Consider the functor nodes: Petri — Set®. The Category of Marked Pointed Petri
Nets is the category of duo-internal graphs MPetri = Grigs,«(v, idSet®). Q

Proposition 25 The categories Petri and MPetri are bicomplete. Q

Example 26  Consider the Fig. 9 and the following symbols for tokens (and the
corresponding initial markings):
o A 0 X ® XY O AeX 0 AX®Y

Then for the nets M¢ and Mp:

a) Coproduct. The resulting nets puts "side by side” the component nets with {A, X,
X@Y} as the set of initial markings;

b) Product. The resulting nets reflects the parallel composition and has {A, X, X@®Y,
A®X, A®X®Y} as the set of initial markings. Q

Remark 27 In (Menezes & Costa, 1996), a functorial operation for synchronization of
nets is given, defined for transitions calling and sharing. It is defined using the fibration
technique. The synchronization operation erases from the parallel composition (categorial
product) of given pointed nets all those transition which do not reflect the given
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synchronization specification. The approach can be extended for labeled transitions
systems and nonsequential automata. ]

Remark 28 The approach proposed for Marked Petri Nets can easily be extended for

several sets of distinguished markings. For instance:

a) Initial and Final Markings. Consider the functor 1L: (Set*)2 — Set* induced by the
coproduct construction in Se¢®. Then, Gr ) (v, idges®) is the category of Pointed Petri
Nets with Initial and Final Markings;

b) Colored Markings. Colored markings generalizes the definition above. Consider the
categories Hue, Color = (Set*)Hue and the functor paint: Color — Set* induced
by the coproduct constructions reflecting the combination of colors. Then,
Grpaint(V, idger®) is the category of Pointed Colored Petri Nets. Q

7.3 Nonsequential Automata

Nonsequential automata (Menezes & Costa, 1995) constitute a categorial semantic domain
of processes around the concepts of sate and transition. It is inspired by (Meseguer &
Montanari, 1990) and consists of a reflexive graph with monoidal structure on both,
states and transitions, initial and final states and labeling on transitions. The interpretation
of a structured state is the same as in Petri nets: it is viewed as a "bag" of local states
representing a notion of tokens to be consumed or produced. A structured transition is a
way to specify that the component transitions are independent, i.e., structured transitions
specify which component transitions are concurrent of which as in (Bednarczyk, 1988) or
(Mazurkiewicz, 1994). Nonsequential automata where introduced in order to achieve the
diagonal compositionality requirement, i.e., reifications (implementations) compose and
distribute over parallel composition. Reification is a special kind of net morphism were
the target object is enriched with all conceivable sequential and concurrent computations.

Note that the following definition is analogous to the category LTS, replacing Set by
CMon. Also, the approach for initial and final state are similar to the one introduced for
Petri nets with initial and final markings.

Definition 29 Consider:

a) The category of reflexive graphs internal to CMon where the distinguished nodes
have a monoidal (commutative) structure RGr ) (CMon) such that IL: CMon2 —
CMon is the functor induced by the coproduct construction in CMon;

b) The obvious forgetful functor shape: RGr) (CMon) — RGr(CMon);

c) The “inclusion” functor lab: CMon — RGr(CMon) where each commutative
monoid L (T is the unity) is taken into the corresponding one node reflexive graph
internal to CMon (1, L, !, |, V) such that 1 is a fixed zero object (the only element of
the support is the unity) and !: Ly — 1, 1: 1 — L are the unique morphisms.
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L - D » R
redex
N - N' » M
transformation

Fig. 10: Double pushout approach for transformation of graph-based systems

Then, the Category of Nonsequential Automata is the category of duo-internal graphs
NAut = LRGr(shape, lab). a

Proposition 30  The Category of Nonsequential Automata NAut is bicomplete. ]

In (Menezes & Costa, 1995) it is shown that the category of Pointed Petri Nets is
isomorphic to a (neither wide nor full) subcategory of Nonsequential Automata, i.e., Petri
nets constitute a special case of nonsequential automata.

8 Anticipatory Systems

In (Menezes, 1999) we proposed an anticipation mechanism based on graph
transformations, using the so called single pushout approach (Lowe, 1993) on a category
of nets with partial morphisms. In this context, a graph transformation stands for a
possible system anticipation (Dubois, 1998), (Rosen, 1985) In this paper we show a
similar approach using the so called double pushout approach (Ehrig, 1979) extended for
Petri nets viewed as graphs with fotal morphisms. The generalization for labeled transition
systems and nonsequential automata can be easily obtained using the above results.

For the double pushout approach (see Fig. 10) consider the net N to be transformed,
the rule {left, right) (a pair of morphisms where left usually is a monomorphism) which
specifies how the transformation should be done and the morphism redex (usually a
monomorphism) which instantiates the part to be replaced in the original net N. The
pushout complement @ determines the net N’ and then the pushout @ determines the
transformed net M. The transformed net M is a possible system anticipation of N
according to the given rule {left, right) and instantiation redex. Therefore, based on
(Menezes 1999), the specification of an anticipatory system is a grammar Ant = (R, N)
where R is a collections rules and N is a MPetri-object called initial net (assume that
instantiations are all possible monomorphisms between corresponding nets). Note that a
partial morphism r: L — R can be seen as pair of (total) morphisms {left: D — L, right: D
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— R) where left is a monomorphism and D is the “domain” of r (in fact r is a class of
equivalence of pair of morphisms). This view shows that the approach using the double
pushout in this paper is very close to the single pushout with partial morphisms in
(Menezes, 1999). However, they are not isomorphic (the discussion of this topic is not a
goal of this paper).

Example 31 In the Fig. 11, consider the net Orig to be transformed, the rule (left,
right) which specifies the replacement (the transition a is replaced by transitions a1 and
ay, the corresponding source and target states are preserved, the marking A is forgotten
and the marking 2B is introduced) and the monomorphism redex which instantiates the
part to be replaced in the original net. The pushout complement ©® determines the net
Compl and then the pushout @ determines the transformed net Antic. This example
illustrates a replacement of a transition (a possible system anticipation or system
refinement) and also a replacement of a marking (also a possible system anticipation or
modeling of a token game such as the firing of transitions). Q
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9 Conclusion

We construct a categorial framework for graph based systems. The concepts of duo-
internal (reflexive/non-reflexive ) graphs, with/without distinguished nodes and labeling
on both arcs and nodes is proposed. The requirements for the existence of limits and
colimits inherited from the component categories is set. In this context we show how
bicomplete categories of Marked Petri Nets, Labeled Transitions Systems and
Nonsequential Automata are defined. Also, we discuss the existence of colimits in
categories of Petri nets equipped with initial markings (which is not usual) where the
interpretation of coproducts and pushouts are adequate for giving semantics for
concurrent, anticipatory systems. A double pushout approach for graph transformation is
proposed as a mechanism for systems anticipations. In this case, the specification of an
anticipatory system is a graph grammar extended for nets. Using the proposed duo-
internal graph approach, the generalization of the graph transformation for other graph
based systems such as labeled transitions systems or nonsequential automata are
straightforward.

Currently we are developing a similar approach for categories (duo-internal
categories), generalizing the notion of internal categories. Using adjunction between duo-
internal graphs and duo-internal categories we will be able to express computations of
graph based systems. Note that, enriching (reflexive) graphs with a special notion of
transitive closure (able to express sequential and nonsequential computations) we get a
category. Also, in this context, we will be able to express reifications (implementations)
where a transition is mapped into a (possible complex) transaction. Therefore, a system
reification is just a duo-internal graph morphism where the target graph is enriched with
its computations.

In the near future, we plan to extend the notions of internalization and duo-
internalization for partial graphs, generalizing previous work in (Menezes, 1999).
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