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Abstract

A billiard in the form of a stadium with periodically perturbed bounda,ry
is considered. Two types of such billiards are studied: stadium with strong

chaotic properties and a near-rectangle billiard. Phase portraits of such bil-
liards are investigated. In the phase plane areas corresponding to decrease
and increase of the velocity of billiard pa.rticles are found. Average velocities

of the particle ensemble as functions of the number of collisioru are obtained.
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1 Introduction

A notion of billiard in physics is known since G.Bikhotr [1] who considered a prob-

lem concerning the free motion of a point particle (billiard ball) in some bounded

manifold. So, the billiard dynarnical system can be iutroduced as follows. A billiard

table Q is a Riemannian manifold M with a piecewise smooth boundary âQ. The

billiard particle freely moves in Q. Reaching the boundary, it is reflected from it

elastically. Thus, the billiard particle moves along geodesic lines with a constarrt

velocity. In the present article we consider billiards in Euclidean plane. In this ca.se

the angle of incidence of the particle is always equal to the angle of reflection.

In accordance with the boundary geometry, dynamics of the billiard particle can

be integrable [3], completely chaotic [5, 6] and, depending on the initial conditions,

regular or chaotic [4, 7, 8, 10].

A natural physical generalization of the billiard problem is perturbation of the

bounda^ry in one or another manner. For the first time, this problem concerning

collisions of particles with massive moving scatterers has been considered by S.Ulam

[12] in the context of the unbounded increase of energy in periodically forced Ha-

miltonian systems. It goes back to the question related to the origin of high energy

cosmic particles [11] and known as Fermi acceleration. The Fermi-Ulam model has
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been the first system where invariant curves, chaotic layers and stable islands have

been investigated (details see in [13]). It has been shown that in the case of a quite

smooth perturbation of the boundary the particle velocity is bourrded by invariant

curves. Otherwise, the velocity can grow indefinitely.

For low-dimensional i,ntegrable billiards the problem of Fermi acceleration has

been studied on the example of circle and elliptic billiards 12,3,l4). In these papers

the authors come to conclusion that the velocity of the pa.rticle ensemble is bounded

by the corresponding invariant curves. Investigations of chaotic billiards have been

performed for the Lorentz gas [t5, 16]. As predicted, perturbations of the boundary

of such a billiard lead to the appearance the Ferrni acceleration for the particle. In

addition, the acceleration is higher in the ca.se of periodical boundary oscillations

than in for their stochastic perturbations.

In the present paper \rye study so-called stadium-like billiards [10] which are

defined a.s a closed domain Q with the boundary ôQ consisting of two parallel lines

and two focusing curves (Fig.t). If parameter ô is a sufficiently small then the

billiard is a near-integrable systern. In this case its fixed points are stable. As a

result, in the stochastic (or chaotic) "sea" the stability regions appear which consist

of invariant curves. At the same time, owing to a weak nonlinearity, dynamics

near the separatrixes divided the stability regions of elliptic points is chaotic, and

the particle can reach neighbourhoods of all points in the chaotic layer. In the

case of the fixed boundary the particle dynamics can be both chaotic and regular,

depending on the initial conditions. Introduction ofexternal perturbations leads to

the possibility of the particle passage from chaotic region to the regular one a,nd

back. This is the reason of new interesting effects rvhich are also described in the

paper.

2 Definitions and maps

In this section, basic analytical results are presented. They are necessary for the

further description of the billiard dynarnics.

2.L stadium-like billiard with the fixed parabolic focusing

components

Consider a billiard shown in Fig.l. To describe its dynamics let us construct the

corresponding dynamical system for ô ( o. For this, we use the known method of

specular reflections. It consists of the reflection of the billiard table form neutral
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components. As a result, the stadium is replaced by a caterpillar billiard. It can be
shown that the change in the particle velocity in both cases is the same. In addi-
tion, one can show that between trajectories of the initial billiard and the obtained
"caterpillart', a one-to-one correspondence takes place.

. l
l ) l

Figure 7: A stadiumJike billiard and its development.

Suppose that at the initial time the particle belongs to the billiard boundary and
its velocity vector directs towards the interior of the billiard region. Let us choose
coordinates ,! and r as shown in Fig.l. The motion of the bitliard particle induces
a map (Ibn,xn) -+ (ry',1t,o,+r). Suppose that ô ( I. In this case the focusing
components can be approximated by the function X@) =  bx(r - a)/a2. For such
billiard configuration the map is written as follows:

fintr: rr, + ltan thn+L t mod a ,

thn+L: tbn - 20(rn+) ,

where d(r) : arctan(x'(")) (see Fig.l). If ô is small then p æ 4b(2r-a)f a2. For
the further analysis change the variables: € - sla, € e [0,1). Then

(n+r : €" * 
*tantln, 

mod 1 ,

tbn+r : ,t, - 
!Q*+, 

- 1) .

In Fig.2 the phase portrait generated by the map (1) is shown. Initial conditions
for each trajectory are ruarked by crosses. One can see that the trajectory with
initial couditions in the chaotic region can reach any point of this region. At the
same time, in the regular regions the points moves along invariant curves.

(1)
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Figure 2; Phase portrait of the billiard with parabolic focusing cornponents (see map (1))

at a:0.5, ô:0.01 atrd t: L. The diagrarn contafus tlree regular ttajectories (each by
L07 iterations) and one clnotic trajectory (5' 10E iturations)-

It is obvious that the fixed points of the map (1) are the following: € : ll2 and

ds : ârctan(mall). If m = 0 then the billiard particle moves strictly vertically. If

m : I then it moves for one cell. And so orr. Irr Fig.2 the fixed points corresporrd to

maximal ellipses. Let us find the stabilitv conditions of these points. To this end,

change the variables: {' : A{' + | 12, ,1,, - L\b, I atctan('mall) and linearize the

map. Then we get:

a€'+r : a(, + -l - *tt^ + o(/,..Lz^) ,-  a  cos '?s

Lûn+t - Athn- 
To*,,*, ,

wlrere ry', : arctan(rnalt). The corresponding transformation rnatrix has the form:

, =  
(

I
1 _- 

acos2 rb.
r6b . r6bl-  
"  

' -  
d ' "o{4,
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It is not hard to see that detA: L. Thus, the map preserves the phase volume.
The stability criterion for the fixed points is lTlAl ( 2. Then coszrf.,, > 4bl/a2

or mz 1; l/(4b) - 12f a2. On the other hand, transition to chaos take place if

4bt
o , , t .  

( 2 )

Eigenvalues of the matrix A are Àr,2 = etio , where cos o = 
T*O.Let 

us introduce

1 = ll@cosz rb,), 9: L6b/a. In this case

A:( r  ̂  )
\  -s  t -  l s  )

and its eigenvalues

t\
X t , z =  |  e r i o  - L  I

\ / l
Consider matrix X with the columns of eigenvectors. As known, in this case the
matrix I\ : X-t AX is diagonalization of the matrix A:

^ - ( " ' o  o  \" - \  o  
" - ' "  )

transformation matrix has a diagonal form are the

z\_ l ._ ,  1a€\Z')-" \a, lJ '

New variables for which the
following:

(

where

x - t _  
i  ( . : - ,  - / \

l L  - 2 s i n o \ - e i " + 1  
f  )

One can see that Z and Z* a,re complex conjugate. Thus,

Zn+t :  Z r r€ 'o

If we take Z inthe form of Z = Ieiq then in the action-angle variables we obtain:

Ina t :  In  ,
ï n + t = 0 n + o  '

Thus, the particle motion around the stable point is written by the map with the
following rotation number:

o:a,rccos (r-"#O) (3)



In turn, old variables have the form:

A€ :21 cos9 ,

2L
t h : 1 ( c o s ( o * 0 ) - c o s 9 ) .

J

Therefore, the Jacobian of the transformation is ,.I = -I 
"ino.j

2.2 Perturbations of the boundary and resonance

The particle motion with the velocity V generates a flow for which we can introduce

time t. In turn, the time between two sequential collisions is the following: r æ
I 1

---: Thus, we get the rotation period:
cos'tps v

T r : Y r :  , 2 n l  '
o cos ry'" arccos (t - aut 1 1o 

"os fiz)v 
'

If the system undergoes external perturbations of the boundary of period [r1

then for Tr : T"rt we can observe the resonance between degrees of freedom. This

leads to the fact that regions including stability areas (see Fig.2) are accessible for

the pa^rticle.

Some words about the nature of the resona^nce (see Fig.3). At the motion along

the invariant curve in the neighbourhood of the stable point, angle r! oscillate.

Collision of the particle with the perturbed bounda,ry leads to the change in d. If

the boundary moves towards the particle, then the angle decreases. Otherwise it

increa.ses. Suppose that the image of the trajectory moves along the arc AB. In

this ca.se, if the particle undergoes collisions coming from the opposite side, then the

trajectory tends to inside of the area. If the boundary and the pa.rticle velocities

have the same direction, then the trajectory goes outside of the region.

For the resonance between the boundary oscillations and the motion along the

invariant curve form B to A, collisions change the particle direction. This leads to

larger shift of the trajectory to the stable point.

Flom the equality Tr : Teatwe can obtain the resonance condition for the particle

velocity: 
I

ï 1 - -

cosry',arccos lr-tbl/(""*@ 

' (4)
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Figure 3: Inuariant cwves atound stable points (schematically).

Hereafter, for simplicity we assume that the frequency of external perturbations
u = t. Then T"r1 : )v.

For the invariant curves with d, : arctan(rna/l), m ) 1, there exists only one
area where the absolute value of the angle tltn increa.ses (along the arc AB from A to
B in Fig.3), and the a,rea of the decrease in /,. However, for the central stable fixed
point there are two such areas: C D , E F for increasing and DE, FC for decreasing.
This leads to the fact that in the neighbourhood of this point resonance is observed
for the same condition that in the other areas, but the particle velocity is less by
half. Therefore,

v::+: (5)

2.3 Focusing components in the form of the circle arcs

In this section, we consider a stadiumlike billiard with the boundary consisting of
two focusing components in the form of the circle arcs and compare the obtained
results with the previous parabolic ca.se.

2.3.1 Fixed boundary

Suppose that focusing components are arcs of the radius .R circle (symmetrical about
the vertical billiard axis) and the angle measure 20 (Fig.a). Geometrically we can
obtain that

a2 +4b2 u
H: --gb ; Q : arcstn 

tE 
.

For such a billiard the chaoticity condition is obtained as follows [9]. Assume that

Q c R'and the focusing component is a part of the circle C. Chaos can be observed
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if disk D, AD: C, belongs to the billiard table Q. Thus,

I 4bt
2 R =  o , > I '

that is the same as (2) obtained from the analysis of the stable points.

Figure 4'. A stadium-like billiard with focusing components in the form of circle arcs.

Let us introduce dynamical variables as shorvn in Fig.4. Assume that angles g,

and a| are counted counterclockwise, and the angle a, is counted clockwise. For the
fixed bound ary ai : o,,. Suppose that V" is the particle velocity, and t, is a time of

n-th collision. Let us find a map describing dynamics of the pa.rticle in such a billiard.
For this it is necessary to consider two cases: 1) After collisiorr with the focusing

component the particle collides with the same component (multiple collisions); 2)

After the collision, the particle moves to the opposite focusing component.

O n i t n x

Figure 5: Multiple collisions with the focusing component.

1) Multiple collisions (Fig.5).
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In this ca"se, geometrically we get the following map:

Qf, ;1 :  an  t

Qn*r = Air+t ,

gn+r = gn * r - 2an (mod 2tr) ,

rz+1 :  , ^ *zR: lo "  .
V n

If lp"+,| ( O, then the particle collides with the same component.
n + l-th collision with the opposite cornponents takes place.

2) Collision with opposite components.
For this ca.se the map can be written a.s follows:

(6)

Otherwise,

f r ' ' l
oi+r : arcsin lsin (ri" + O; - + cos ?rn | ,

L r t l

Q n + r =  O i 1 r ,

pn+r : tlto - ai+r ,

(7)

tn+t : tn *
R(cos rpr, * cos rprr*t - 2 cos O) + ,

V"costhn

where
4 1 "  =  Q n - g n s

R
nn : 

.*t; fsin o* + sin (O - ,lt")] ,

ri,+r : sn + I ta;nt!" (mod a) '

Really, let us extend the circle axc up to the semicircle (Fig.5). Introduce the

angle r/ between the vertical and the velocity vector. [t is counted clockwise. It is

obvious that BC : r?cos gn+ttûtbn+1. FYom triangles ABC and ABtCr we get:
BrCr  _ABt  : !Gg;p , * t  

-cos0)  mL^-^
BC AB Ëffi' Therefore'

B1C1 =.Rtan ry'"*1(cos pn+r - cosO) .

Now, using the value c,, for the nort collision we obtain:

g,n*r = Ësin O * Rsin gn+r * Rtan$oa(cm gn+r - cos O) =

R 
(8)

= 
ù 

(sin a,, + sin(O - th'J) .
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In addition,
r i+r :  un*l tan/" (mod a) .

If we invert the particle motion then the expression (8) gives connection between ri

and o[. This fact allows us to get the explicit system (7).

2.3.2 Perturbed boundary

Suppose that focusing components are perturbed in such a way that their velocity in

each point is the same and directed by the normal to the component. Assume that

the velocity value depends on time as follows: U(t) : Usf (w(t + lo)), where c,; is a

frequency oscillation. We consider the case Uslw <.1, i.e. the shift of the boundary

is small enough and can be neglected. Therefore, the billiard map is written as

follows:
W=W,

(h- '  - .  - \  (e)
0n = ârcsin (.* sinai 

) 
,

o,f,l1: an , )
Pn* r : 9n * r -2an (mod2 r r ) ,  I  t  l p ,+ r l  ( o

. 2Bcosan I 
"r

t n + r : r " + - - E - ,  
)

(10)

i f  lp"+r-2o"1 >o (rt)

V n : Q n - P n ,
R  r ,r": 

#rh*fsin 
o, * sin (iD - ,!)) ,

rl,+r: rn + ltantltn (mod o) ,
f  r . ' . ,  I

oi+r : arcsin lsin (d" + O; - + cos$nl ,
L f t l

?n+r: $n - alr+r ,
. R(cosgn * cos <pr'*r - 2 cos iD) * I

Tn+t :  t"  r

The given map describes a stadium-like billiard with the focusing components in

the form of the circle arcs. This map is exact one except for the approximation

tJslu K L The first group (10) corresponds to sequential multiple collisions with

one of the focusing components, and the second group (11) corresponds to the

passage to the opposite side of the boundary.

3 Numerical analysis

In this Section we consider stadiumlike billiards with constant and perturbed bo-

undaries. In the first case, the pa,rticle dynamics is described by the exact map (1)
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and approximate map (6)-(7), respectively.

3.1 Phase diagrams of billiards \ilrith the fixed boundaries

Pha.se portrait can help to understand the system dynamics and define chaotic and
regular regions in its pha.se space. In Fig.2 the pha.se diagram of the billiard with
the fixed parabolic boundary is shown (see map (1). Crosses in this figure are initial
conditions. One can see that phase plane is divided into regular and chaotic regions.
If the initial conditions belong to the regular region then the trajectory remains
here and forms the corresponding invariant curves. However, beginning in chaotic
region the phase trajectory uniformly covers this region. The described portrait has
been obtained on the basis ofthree regular tra.iectories (each contains 107 iterations)
and one chaotic trajectory (5 ' 108 iterations) of the map (1). Geometric size of the
billiard is the following: o : 0.5, b : 0.01, / : 1.

Figure 6: Pàa.se portrait of stadium-Iike billiard with foatsing æmponents in the form
of cfucle arcs (see rnap (6)-(7)). Paraneters of the billiard are the,sÉrme ÉÉ in Fig.2. One
can sæ nonuniformity of the covering of the chaotic region.

0.0
0.0r

llt

In Fig.6 similar results concerning the
focusing components is taken into account,

map (6) (7), where the depth of the
are shown. Remind that for this map
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the approximation ô 4l,a has been used. To reasonable comparison, the geometric

sizes of the billiard and the rrumber of trajectories have been chosen the same as in

the previous case (Fig.2).

The difference between obtained diagrams can be easily explain by means of

Fig.7.

Figure 7: The difference betwæn the exact billiard map and apptoximate map.

Approximation of a small enough depth of the focusing component for the map

(1) means the following. Let B be an intersectiorr point of the parabola ends and

the particle trajectory. In approxirnatiorr? we consider the particle collision in the

point A which is a projection of B into the arc. But, in fact, the point C is the

collision point. As a lesult, in the exact case for large enough ry', collisions happen

mainly with the right (in the Figure) part of the arc, and from collision to collision

the angle ry' decreases. Thus, the billiard particles as if "push out" to the region

of the small angel r/. This is in agreement with Fig.6 where the region tlt <rl2is

empty..

3.2 Perturbed map

In this section we consider the problem of the velocity change depending on its

relation to the resonance value (4).

3.2.f Phase diagrams

Consider the map (9)-(11) corresponding to the perturbed stadiumlike billia,rds.

Construction of the phase diagrams have been performed for the same values of

geometric parameters as in the previous $3.1. Therewith, the amplitude of oscil-

lations Uo : 0.01. As noted above (see $2.2), for various particle velocities the

corresponding phase portraits should be different form each other.

In Fig.8 the resonance velocity as a function of the angle ry', (see (a)) is shown.

One can see that in the region form 0 to d, -o (where ,l), ̂ * is a malcimal angle for
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v v

Figure 8: The tesanance velocity as a lunction of t!, (sæ @)).

which the fixed points are still stable) the value of the resonance velocity is varied
through a small range.

Phase portraits for the perturbed billiard are shown in Fig.9. For detailed nume-
rical analysis three particle ensembles with initial value V6 : I , 1.2 and 1 .5 have been
considered. Therewith initial conditions have been chosen in the chaotic region in a
random way. Thus, the obtained portraits give an insight into the velocity change
ofthe billiard particle. In the obtained Figure, the vertical shaded areas correspond
to the velocity increasing, and the horizontal shaded areas fit its decreasing. The
wait areas (without shading) are the intermediate ones; here the particle velocity
is transient. The black tones correspond to the areas which are inaccessible for the
pha.se trajectory.

As follows from obtained diagrams, if Vs I V, then around the stable fixed
points there exist the areas surrounded by invariant curves. As before, these area.s
a^re inaccessible for particles from the chantic regions. At the same time, in the
neighbourhood which ha.s become accessible for the particles as a result of pertur-
bations, one can see areas of the increasing and decreasing velocity. Depending on
the relation to the resonance velocity value, they can change places.

If V0 : % (the resonance harmonic) then all neighbourhoods of the stable fixed
points (except for the central one, rf4 = 0, €o : l/2) become accessible for the
trajectory. Iu addition, for this resonance there are no the well-defined areas where
the pa^rticles have an acceleration.

Following (5) the resonance velocity in the neighbourhood of the central stable
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0  ù  o 2 r  0 ! l

v =4.2
o

0 ù  o ? r  0 G

v= i4- 0

Figure 9: Pha.se diagrarns of the velocity change in the billia'rd with the pertutbed bound-

æy (see (9)-??eqPertCirBi lal  atb:0.01, a:0-5,1:I ,Uo:0'01 andu:1'  Vs :  1 '9,

1.2 (resonance), 1.5.
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Figure 10: ?he sarne a.s in Fig.9 but Vs :0.b, 0.0 and 0.7.



fixed points V,0 t 0.6 (primary resonance). In Fig.10 the phase diagrams for the

initial velocities Vo: L,1.2 and 1.5 are shown. One can see that atVs: V,o all

areas of the phase space are accessible.

3.2.2 The particle velocity as a function of iterations

Numerical investigations of the perturbed billiard described by the map (9)-(11)

have been performed in two ca.ses: when the billia^rd has strong chaotic properties

and for a near-rectangle stadium. In the first case the billiard is a "classical" sta-

diunr. Then t : n12 and the billiard is a dornain with a boundary that consists of

two semicircles and two parallel segments tangent to them. The latter case means

that fbcusing components are segments of the almost straight line, and the billiard

system is a near-integrable one.

For the first case the following billiard parameters were chosen: a : 0.5, b : 0.25,

I : !, uo = 0.01, u) : l, and l/e = 0.1. The particle velocity was ca,lculated as the

averaged value of the ensemble of 5000 trajectories with dift'ererrt initial conditions

(solid curve 1in Fig.11). These initial conditions were different from each other

by a randorrr choice of the direction of the velocity vector u6. As follows frorn

the numerical analysis, the obtained dependence has approxiurately the square-root

behaviour (V(n) - 1fi). The fittingfunction A - an'(the dot-and-dash curve 1in

Fig.11) yields the following values: a: 0.01015 + 0.00002 and c: 0.4446 + 0.0002.

A near-integrable case means that parameter b (see Fig.4) is a sufÏiciently small,

and the curvature of the focusing components gives rise only weak nonlinearity in

the system. Iu such a configuration the billiard phase space has regions with regular

and chaotic dynamics. This case is much more interesting for investigations.

As follows from numerical investigations, on each side of the resonance the be-

haviour of the particle velocity is essentially different. If the initial value Vo < V

then the particle velocity decreases up to a certain quantity Vyn 1V, and the par-

ticle distribution tends to the stationary orte irt the interval (0,V1n). If, however,

Vs ) V" then billiard particles can reach high velocities. In this ca,se the particle dis-

tribution is nof stationary, and it grows infinitely. In addition, the average particle

velocity is also not bounded.

For detailed numerical investigations initial conditions were randomly chosen in

the chaotic region of the unperturbed billiard. In Fig.11 the particle velocity as a

function of the number of iterations is shown (curves 2-b). The billiard parameters

remains the same as for the stadiumlike billiard (curve 1) except for b:0.01.

On the basis of 5000 realisations and for every initial velocity, three curtteshave
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4.5
4.0

v 3'5
3.0
2.5
2.O

2.0x10" 4.oxl05 6.0x105 g.ox.l05 i.0x106

n

Figure lL: Average velocity of the ensemble of 5000 paxticles in a stadiwn as a îunction
of the number of collisions, I : l, a: 0.5, [/o : 0.01 and u : l. Two (dot-dash and solid)
cvrves 7 corresponds to the billiard with strong chaatic properties (b:0.25). Curves 2-5
comespond to the near-integrable system (ô : 0.01): Vo : 1 (curve 2, J) andVo :2 (curve
4, 5). Cwves 2 and 4 æe the average velocities of the particle ensemble. Cwves 3 and 5
conespond to maximal velocities reaehed by the particle errcerub[e to the n-th iteration.

been constructed: the average, rninirnal and rnaximal velocities which the particle
ensemble has reached to the n-th iteration. So, we can see the interval of the velocity
change. As follows from this Figure, if y0 < V" then the averaged particle velocity
(solid curve 2) gradually decreases and tends to a constant, The rnaximal velocity
of particles (dotted curve 3) also decreases up to Vyl," and then fluctuate near this
value. Eventuallv, the particle velocities lie in the interval 0 < y <.Vy;n.In the ca^se
of V > V", the mininral velocity of particles as before decreases. This rneans that in
the ensemble there is a number of particles which are in the region of low velocity
values. In our numerical anâlysis the part of such particles was about 75 percents.
At the same time, there are particles with high velocities (dashed curve 5 which
corresponds to the maximal velocity of the ensemble). As a result, the averaged
particle velocity (solid curve 4) iucreases.

In Fig.12 a stationary velocity distribution is shown. This distribution was cal-
culated by the one particle trajectory during 10e iterations. The initial velocity
was chosen as follows: vs æ vlinf 2. The value denoted by vr;n corresponds to the

352



0.3 0.4

Figure 12: Stationa,ry distribution of the pa,rticle velocity calculated by the one particle
trajectory durin1 10e iterations. Vyn is a maximally reached velocity.

maximally reached velocity.

4 Concluding remarks

Billiards are very convenient models of several physical systems. For example, parti-

cle trajectories in billiards of specific configuration can be used in modelling a lot of
dynamical systems. Moreover, most approaches to the problems of mixing in many-

body systems go back to billiard-like questions. A natural physical generalisation of

a billiard system is a billiard whose boundary is not fixed, but varies by a certain
law. This is a quite new field which opens new prospects in studies of problems that

have been known for a long time.

In the present article we have studied the problem of the billiard ball dynamics in

a stadium with the periodically perturbed boundary. Numerical analysis shows that

for the case of the developed chaos, the dependence of the particle velocity on the

number of collisions has the root character. At the same time, for a near-rectangle

stadium an interesting phenomena is observed. Depending on the initial values, the
pa,rticle ensemble can be accelerated, or its velocity ca^n decrease up to the quite low

magnitude. However, if the initial values do not belong to a chaotic layer then for

quite high velocities the particle acceleration is not observed.
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tel

Analytical description of the considered phenomena (mechanisms of deceleration
and acceleration of the billiard particle, stabilisation of unstable points etc.) requiree
more detailed analysis and will be published soon flfl.
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