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Abstract The discrete path approach has recently been use to obtain a closed forn
solution for two simultaneous difierence equations with variable coefficients. \ry'e
apply this result to the solution of the discretized harmonic oscillator and recover
the well known traditional solutions. In the process we learn how the enumerative
discrete path solution transforms into a nlore con!€nient compact analytic closed
fornr. The discrete path approach is specially adapted to problems with mixed
boundary conditions like those arising in the ruodeling of anticipatory systems.
Keywords : discrete path, closed form solution. difference equations, harmonic
oscillator, anticipatory systenr.

L Introduction

This is the first of a series of papers dealing with analytic solutions of difference
equations arising in the modeling of anticipatory systents [ ]. In this first paper, the
simple harmonic oscillator is used as a mathematical model for gaining familiarity
with the discrete path approach, as it applies to coupled difierence equations, and
in building up a compendium of related characteristics.

Every potential function, can in the neighborhood of its local minima be approx-
imated by a parabolic potential. Furthermore, in Newton's second law of motion
as in Schrôdinger's non-relativistic wal'e equation, the harmonic potential has an
exact, analytic and simple solution, which serves as starting point for perturbations
that realistically model the physical system.

The usefulness of the harmonic oscillator as a physical model [8], combined with
the simplicity of its mathematical solutions, has made it one of the favored proving
grounds for mathematical methods, and one of the most frequently used models in
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physics, from mechanical springs, to Planck's photons, to the interactions of atoms
in solids, to quantum field theory, to string theory.

The one.dimensional classical harmonic oscillator problem can be formulated
in terms of difierence equations by discretizing time. This leads to a three term
recursion relation with constant coefficients, or equivalently to two coupled first
order difierence equations. The three term recursion relation ha.s a solution in terms
of powers of the roots of the corresponding characteristic equation. The coupled
difference equations can be solved by the discrete path formalism [2].

The discrete path approach to the solution of difierence equations is specially
suited to anticipatory problems because it allows an arbitrary specification of the
boundary conditions. Specifically it allows for the specification of mixed boundary
conditions (partly initial and partly final) which are an inherent part of anticipatory
problems. Furthermore, this approach can provide analytic solutions for anticipatory
problems even when their complexity leads to difierence equations with variable
coefficients.

In this paper we apply the recently obtained (via the discrete path approach)
closed form solution for two simultaneous difference equations with lariable coefr-
cients [l], to the problem of the discretized harmonic oscillator and recover the well
hrown traditional solution. In the process we learn how the rather complex, and
general, enumerative discrete path solution, compacts, in the case of a harmonic os-
cillator into a power solution (an exponential in the differential linrit). The different
mathematical results obtained along the way are useful as guides (as well as limiting
test cases), in deriving analytic solutions for more contplex anticipatory harmonic
oscillator systems. Since every detail of the discrete path solution, as applied to
the simple harmonic oscillator, will, in the ca.se of more complex problerns, inflate
into an elaborate mathematical development proportional to the complexity of the
problem to be solved, the usefulness of the present work resides, to a large extent,
in the careful development of every detail in the derivation.

One important class of complex harmonic oscillators is that modeling anticipa-
tory systems. As pointed out by one of us (D. Dubois) [5], anticipatory formulations
of the discrete harmonic oscillator are crucial in solving the problem of energy non-
conservation which is characteristic of the discrete harmonic oscillator. If this turns
out to be the only way to solve the energ-v non-conservation problern, the result will
have tremendous impact on the fundamental role of anticipation in the formulation
of the laws of physics.

2 The Harmonic Oscillator

2.1 Continuum formulation

Newton's second law of motion for an invariant mass in a parabolic potential U (x) =

Iter2 6ne one-dimensional non-relativistic harmonic oscillator) leads to the second
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order difierential equation:

ûxe^ tk
d t2+ur " r=u  

w: !  
*

who's general solution is

x (t) : Aeut + Be-bt o (t) = 4P : iu (Aei't - a"-*')

(1 )

or in termsof theinitial conditions ïo:t (0) =,4+B and uo: u (0) : - (A- B)

n{t\ = oscosut * 3 sinr,.,t o (t) : uscostrrt - æst.lsinut

or, alternatively

x(t)  = Csin(ut+ Ô) u(t)  = Cucos(wt+ Ô)

where C = {"?o+ btolæ aû ô= ta,n-l (uq/an\

2.2 Discrete Formul,ation

The ûnite difierence equivalent of equation (1) is obtained via the transformations

d,+A=(E_r ) and dt -> Lt toJ

where f is the identity operator and E (oçlicitly 
fl ) t" Boole's displacement oper-

ator [7] defined by Ef @) : î (c + At). If we define fl = I, then Boole's displace-

ment satisfies Y|@): f @+n\t) for all integer n, positive, zero or negative.

For n nonnegative

i l  + an: (E -  1)":  Ë ( : \*  (6)- 
{:^\rr)"

and equation (1) transforms to:

( " " -28+ I )x ( t )+ (w\ t )2x ( t )=o  0 )

Applyins the displacement operators and making the change of va,riable t + t-24t,

the above equation reduces to

r (t) - 2r (t -At) + [1 + (r,;At)'] a (t - 2Lt) = 0

The time variable is discretized according to

t + t n : t o * n $ t  w h e r e  n - l t - t o lLar l

(2)

(3)

(4)

(8)
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and we use the notation în = t (t") and aa = u (tr,), so the above difference equation
(8) becomes

rn-2nn-1+ [r + @al']nn-z=o (10)

Since the above difference equation ha.s constant coefficients, it can be solved by
the method of roots [6]. Setting ïn = zn leads to the characteristic equation

z2-22+ [ r+ (u ,a r )2 ]  : s

with roots,

z + = 7 + ( i u & t )

So the solution of equation (10) is given by

rn = Â[r + (n.'at)]" + E 1r - (iu\t)l"

The discretized velocity is given by

-- (cr+r - cr.)ù; = __I;_

leading to

? = Â[r + (roAt)]" - B lt - (i/,,Lt)\"
?,u

The coeffiients À and .B are obtained from the initial conditions ûo = Â* F and
ao: iu (,4 - B) as

Â=;(,,*#) B:t(,.-s) = a. (16)
hence

*, =Ik,. #) [r + (tr.,ar)]" *tQ, - #) [1 - (i{.,a4]"

# = tr\'. #) [r + (zr.,at)]" - ] (", - #) [1 + ('{.,ar)]"

(11)

(12)

(13)

(r5)

(r4)

(17)

(18)
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2.3 Interrelation

We define .9" (f", ts) by

Sn(tn,r6) : [1 + (iw\t)]" Si\n,ts) = [1 - (ir.. 'At)]"

then

xn = Âsn(t" , lo) + Â. s;(1,, ,  to)

#: Às.(t ' , to) -  Â.s:,( t ' ' to)

Since Af = (tn - ts) fn, thenin the limit ft. 1 &, At -+ dt, and tr, can be brought as
near i$ desired to any specific value of t . Hence, in the continous limit, 5" (t*, ts) -+

,5(r,t0), where ̂9 (t,to) -,,lggS" (tn,to) 16'=r, hence

s (t,to): ,4;g fr * u (+)]" = siu(t-1os

leading to

r (t,) -+ r (t) = 
J$t (t") la=t - 'le*\t-to) * Be-ù(t-tot

u (r") -r u (t; : J{gu (t,) l6=t = ialÂei"(t-tù I B"-i-Q-t))

and we recover the continuous case solution with À : Aetuk and B : Be-i-to

2.4 Coupled Formulation

We can alternatively formulate the problem of the harmonic oscillator a.s two coupled
first order differential equations,

d,r (t\ da (t) , ^- T - a \ t ) = U  a n o  
d t  

* a - I = U  Û =

The corresponding discrete equations are, as before, obtained by the transformations
d + A: (E - 1) and dt + At,leading to the two coupled difierence equations

r(t + At) = x(t) + At u(t) a(t + At) = u(t) - At ,')2nQ) (26)

Making the change of rariable t + t - At, descritising time a.s before according to
t -> tn: to * nAt , and again setting rn: c (t") and an = 7) (t") leads to

frn -- în-r * ùtun-, and Q)n : 'l)n-r - u2\txn-t (27)

these coupled difference equations are the classical Euler discrete equations for the
harmonic oscillator. They emerge when using Euler's method for the numerical
integration ofthe second order difierential equation (1). They will be solved by the
discrete path formalism.

(1e)

(20)

(2r)

(22)

(23)

(24)

(25)
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3 Simultaneous First Order Difierence Equations

In this section we will present the general solution to a set of two coupled homo-
geneors linear difference equations with variable coefficients, and initially defined
boundary conditions.

We write the two coupled linear homogeneous equations in the standard discrete
path notation as:

Ê, , ,0  =  f t ,o (n ,0 )&, - r ,o  *  l t , - r (n ,0 ) f t , - t , t  n=1,2 ,3 , . . . ,æ

R. , r  :  h ,o (n , l )& , - r , r  *  h t (n ,1 )&, - r ,o  f r - -1 ,2 ,3 , . . . , co

with the initial conditions given by Ào,o = À6p and &,r = À0,r.
The discrete path solution to the above coupled homogeneous equations is [lj

1 g--(n,lc,lc,)

n*,0= D E Às,h,efr*(k,,q|
kt=O g=0

where

Q^"*(n, lc,k ' )  =

Qn,*(k ' ,q) -

4-r

I
h ( k ' . m , \ :  I  +r f  

2

and

F2 (n, k) = [h,o @, U]o-e) [fr,, (n,1)]o' [/,,_, (n, 0)](1-])'

4 The Solution for the Harmonic Oscillator

In the case of the harmonic oscillator

Ra,g = f* Ra,1 = An

h , o ( n , 0 )  : t  h , t ( n , $ )  : A l

Hence

F2(n,k): (-r'tt)ot {or1r'-0, = 1iw12ht (L,t)t

and

Ft, U,k) : 1u|z(*i-i)ci pwat1?

(28)

(2e)

n :  I , 2 r 3 , . . . r æ (30)

I
Fq (i,k) l*;=r,1*,,-1;

imi=etag"*" ' * t t

-1+ô*H)  I
2 )

tII
€{0,1}  j=1
=2qt(1-dr.r, )

t ' ,  / t ' -  1\' \ 2 )

ëi
*tn

- 1

l ("
L-

...*)

( -

(31)

(32)

(33)

(34)

(35)

(36)

(37)

f i .o(n,1)  =t ' -# !=-ar
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4.L R.eduction of the Solution

Substituting the above expression (38) for &, (i,k) in equation (32), we obtain

fi,,,r (k',q) : t fi,Uù'Gt-i)ti l,ruttltil*i=n(x,,*it
t ie$J) i=r lmi=$at2!" ' ! l i

h+--.+tn=2q+(1-61,!)

Du to equation (33)

(-, - 
;) l*i=n1*,,*11 

= (-t)*' (-' - 
;)

Hence, imposing the auxiliary conditions in equation (39), we obtain

O4(/c',q) = I fiQ,ù"tn'-t1'1t'1-'1"*"* 
*" 

{OrOr1"
z7 e{o'r} i=r

h*...*ln=2q*(7-6s4)

and executing the product, leads to

Q"*(k',g) - (i,ut\l1zt+(1-ô1v) t (iu12(k'-t121''"(h'h;"'tn)

,,+ ..+;::tT'ïl-ô*.,)
where

.tk(tr, tz,. - ., ln) : f t,(-r;"*"*"'' 1
i=r l',:tiail"=^

(3e)

and we have made use of the fact that inside the summation, /1+... + ln:2q*
(1 - ô*v).

Next we define the combinatorial structure functions A!* Q) bV

G!* (z): t (z)+'ti"(t't2""'t") @4)
,i €{0'1}

111."'|2n=7n

so that equation (42) can be rewritten a.s

eo* (k',s) = (iust)k+(1-ô1v) c;ffii;lffir,tul (45)

Note that, to obtain (45) we made use of the fact that k' e {0,1}, and hence
2 (k' - t12) : 11.

Subsituting for Oo; (k', q) from (45) into solution (30) for Ân,*, and executing
the sum over fr' leads to

R,^,k :U, 
{19;-'o' 

t*or1'*(1-dro) Gn'2c+t'-a'l 14"')}

*u" 
{T;-'" 

{*o'1'*0'-ô1r) gn'2q+tr-a'r 1ro1}

(40)

(41)

(42)

(43)

(46)
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whereg-r, ,  (n,k,0):  L(n- l+6l ,6)/2) and4-* (n,k, l )  = L(n -  l+6h1|7/21. Since
k e {0,1} we have the identities (1 - ô*o) : dr,r and (1 - d*t) = do*. Hence we
finally obtain

R-,t,:u" 
{*;Ë;'/"J 

{l,ri1^*6h, Gntu+66 (iu)

*u,' 
{ 

t";l;''" 
t* o11'+6ro 6n'zt+6ro 7;r1

(47)

4.2 The Structure F\rnctions

We will now evaluate the combinatorial structure functions (The G functions) for
the harmonic oscillator as defined by equation (44). Since the set of values {li} i"
subject to the two constraints { € {0,1} and, \ +... + ln: m, then there are
exactly rn /s which are equal to 1, and exacily n-rn /s which a,re equal to 0. Hence
there are exactly rnnonttero tenns in *(lr,lr,...,tn).Let the ktr nonzero term
be denoted bV f^(k), so that

' lk (lt, lz, ' ' ' ,  ln) : i * tOl
k:r

I t  isea.si lyseen that f*( l) = (-1) ûd f*(e) = (-1) f^(k- 1), hence f*(k)=
(-1)e and

lk(tt,tz,...,to): p,t-r)*: {j, If, Ttr;l
Hence

"yk(h , t2 , " ' , / ' )  :  (ô0 , - -oaz  -  1 )

Note that "tk (h, 12, . . - ,Ç) is independent of the details of the set {til, as long as
{li} obeys the two conditions (.i e {0,1} and h * ... * (n: yn.

Substituting for 7fl (4,t ,. . . , k) in the G-firnctions, we obtain

G\ (z): t  1r;+(do'--"a'-r)
tr€{0,1}

h*'-*ln=m

Since (z)t(dq- -oa:-1) is a constant with respect to variable of summation, then the
above expression can be rewritten a.s

G?*(z ) - (z )+(ôo . - - "a r -1 )  E  I  (52)

',1.'.filL*
For every possible set of objects {Q} subject to the constraints ti e 10,1} and
h * ... * ln: nr , there is a term of value unity in the sum. Hence the above sum

(48)

(4e)

(50)

(51)
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is equal to the number of combinations of n objects taken rn at a time [g], and is
given by the binomial of m relative to n , leading to

G ? *  ( r ) =  ( i )  ( 2 ) + 6 r . ^ * o a z
\*)

where we have also made use of the identity (60,*mod2 - 7): -6r,*mod2

G\2q+t*' Q,u) = (rrÏ urr) 
(iur)*ôr'(zn+o*r ) *oa z

and

G?2n+t*o g'u) : (,, ; r-r) 
(i i .r)-dr'(zc+aro) 'oa r

But d1,12015*r)mod2 : drdr, : ôp and ôt,(zq+6rùmod2 : dr,ôro : ô&g . Hence

G\2q+t^ U.ù = ( n 
\ (;,,,)*ô*,

\zq + 6nr) \ '* '

and

G!20+6*oee=(  ) f r r ) - * "  (bZ )
\2q + ô66/ '"*'

4.3 The Discrete Solution

Substituting for the G-functions their values from equations (56) and (57) into o<-
pression (47) for Rn3 we obtain

Rn,* =À6,6 (ir,.,)ô*' 
{L(n-gr)/'?, 

(iuu1y2e+',' (rn:u-, ) }

+Às,1 (id)-ô* 
{t'" *3:'') 

tirL11'o*or" (roîr-)}

So c" (l) and u, (l) , are given, for n = 1,2,3,...,æ by

rn:  Rn,o-  ̂r , ,  
{Y)  

( t  a , r ) "  ( ; ) }

*À6,1 (ia)-l 
{ 

u"*3r't 
(iu alfo+t ( rrî, ) }

un -- R-,r: Ào,o (zo) 
{u";Ër"' 

(iwut)k+t (rri , ) }

*^.,,{'ËJ uu^t)2q (;r\

(53)

Hence

(54)

(ôô)

(56)

(58)

(5e)

(60)
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which can alternatively be written as

o,, : )o,o Ë (1\ @or)o + h,, (ir)-, Ë-  - ' -  
q â  \ q / '  q = o

q eaen q &,

o,, : À0,0 (-) 
â (i) troryo + ro,, 

,à (i) O"ul'
q oil q eoen

4.4 the Propagator F\rnctions

(i) waa'

(63)(i)wu'

(6r)

(62)

Define the functions S-"r, (n) , Soaa(n) and S+ (n) by

s*-,(n): ,â (i) tr"ryo s*ot") = 
,à

qeaen q&

5+ (n) = Suo"n(n) t S,aafu)

then

s**(n): I Ir* (n) + s- (n)l s,aa@) = 
|ts* (n) - s- (n)j

and equations (61) and (62) for c" (l) and u, (t) can be rewritten in terms of S"o",, (n)
, Saa (n) as

r. = À0,05", 
"n 

(n) ï (iu)-t Ào,r^9,aa (n )

an ='ù;,Ào,oSaa(n) + )o,rS"r", (n)

or, alternatively in terms of 51 (n) as

sn = ry [^on * (.)-' )0,,j + *,a lron - (ir)-' À0,,]

un = tuP[i.Ào,o+ Ào,r] - LP [iu)s,s - Ào,r]

Where Ào,o and &,r are given in terms of the initiat conditions by Àe,6 -
)o,r : tto . So that

*^:Iç,.#)s+ (n) *t(., - #)s- (n)

#:;ç,.#)s+ (n) - 'rç,-#)s- (n)
S+ (n) are ea"sily evaluated a.s

(64)

(65)

(66)

(67)

(68)

(6e)

.06 and

(70)

(71)

,â (;) uuat)q
q ù

sr (n) : 
.â (|) a,na'*

q etcn
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s+ (n) = i (:) (rùùat)q = (1 + it',at)"
F6 \s

So we finally have

,, :ti("'. #) g + iuat)"* ; k, 
- #) (r - ia,ar)"

# = tt ç' . #) 0 + iuat)" - + (,' - #) e - iuat)"

4.5 The Contimrum Limit

Taking the limit a.s n + æ while holding t,.: to * n\t fixed at l, we have

51(t) :,lilgs* (n)lr,=, = ,,lgg [r +,;, (?)]"
OT

,9+ (t) = e*iu(t-t4)

Thus, making use of c (t) = 
#*r (t") lr"=r and u (t) :,,$, (t") lr"=, we have

x (t) : l k, * !e) e*a-t't * ; (", 
- 

H) e-tuG-to)

,@:#llffiUh

ltu
Vh

x(t)+tffir,r] : ltu
tl zn-

tffi
l i zh

Fr-*l

(73)

(74)

\ t  o )

(76)

(77)

(78)

* =IQ, * !e) e-o-t"t -i@ - 
#) e-tuft-tù (7e)

4.6 The Lowering and Raising Operators

The energy lowering and raising operators for tùe hannonic oscillator are given
respectively by [3]

and

(80)

(81)"'@:il x(t)-,ffin4] = l" t'l . tO1
We detne their discrete counterparts by

an : a(r") = lfff"t,"l -+l=

1 5 1

ltu
U zr"(."-#) (82)



ând

alr= a'( t")  = ltu
Un ["t,"1 .+1: lm

U2h

Their time development is given, via equations (74) and (75) by

an = (7 - iuAt)" as : S- (n) ao

oi = (1 + iu\t)" o6 = S+ (n) aô

a(t) = 
"t!1go 

(t") ["=r - e-ù'(t-t4)q

a'(t) : ' l igo'(t) lr"=, - eiu(t-h)a*

(83)("".3)

(84)

(85)

(86)

(87)

5 Conclusion

The simplicity of the harmonic oscillator problem and its well known solutions for
coatinuous as well as discrete time, have provided us with the framework to analyze
and understand the structure of the discrete path solution as it applies to harmonic
oscillator type problems. Fbur specific relevant mathematical functions emerge:
these are the .Q (n, k) functions as defined by equation (34); the G-functions as
defined by equation (44); the "/h(h,t2,...,A) functions as defined by equation
(43); and the ,S1(n) functions as defined by equations (63) and (64). In the case of
the simple harmonic oscillator all these functions reduce to simple compact analytic
forms. For more complo< anticipatory problems, we should expect that the form
of these functions will reflect the complexity of the problem being solved. But in
all cases, the simple analytic results obtained here will serve as a guide and provide
limiting test ca"ses for the difierent parts of the solution.
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