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Abstract
The main problem of system theory is summarized by; how one can express the

growing universe in a universe? In a set theory, the universe appeared in the diagonal

àrgument is a candidate of the expression of the growing universe, however it is not in a

universe. To resolve this problem, we propose the dynamic quantifier and partial-all

quantifier that mimic infant's eyes. A universe is defined as a concept lattice that is

obtained from a binary relation between two sets. Because a formal concept is def,rned

through a particular operator with all-quantifier, V , a concept lattice is complete and the

relationship between a relation and a lattice is unique. By contrast, partial-all quantifier,

Vp, ro longer surveys all elements in a given set, and then an obtained lattice is

different from a normal concept lattice. In this scheme, a lattice is perpetually changed.

If a lattice polynomial is used as syntax, a lattice is used as semantics. Due to partial-all

quantifier, à httice is destined to be local semantics. Especially, lattices that are derived

through partial-all quantifier can constitute the hierarchy of distributive law, and then

the domain in which perturbation is applied is perpetually changed in the model that a

lattice polynomial keeps on transform binary sequences.

I Introduction

Science in the 2lth century will be focused on the origin of consciousness. The

central problem on consciousness is strongly relevant to the interface of epistemology

and ontology. The quolia (Chalmers, 1996), for example, can be the interface of a

natural thing and the expression of it. Qualia of red as an apple is not a particular

frequency oi light, however the latter is a particular expression of it. There is a great gap

between the expression and an object expressed before, however the consciousness

exists as far as a natural object and its expression is connected. Ofcourse it is not a

unique problem up to the science ofconsciousness.
The new system theory is expected to resolve the problem arising from the origin

of consciousness. The problem of the qualia can be summarized as the problem of an

evolutionary hierarchical system (Ehresmann & Vanbremeersch, 1987; 1997), because
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the qualia is established in the interface of different logical criteria. Such a system
contains logical hierarchy. In logical sense, the mixture of different logical criteria is
prohibited because it entails to a contradiction. A system, however, generates new
hierarchical criterion in its own right, and then a system has to see and compare various
kinds oflogical criteria. Such a system, therefore, cannot be failed even ifa system is
exposed to a logical contradiction. Conrad (1985, 1993) also concentrates on living
systems as evolutionary hierarchical systems. He points out the aspect in which
parallelism among cells can proceed and vertical interactions among different logical
criteria. In a logical sense, such a system fails to a paradox. The evolutionary
hierarchical system, however, contains a particular boundary condition in which a
paradox is established. In other words, a boundary condition in which a system is
logically defined is regarded as materials in the sense of evolutionary hierarchical
systems.

Rosen explicitly manifests the paradox in evolutionary hierarchical systems, and
calls them complex systems (Rosen, 1985). He and his colleagues find a particular
complementary relationship called adjunction (Maclane, 1971, Birkùoff, 1967) between
formal and natural systems (Luie, 1985), and expands the idea to a system with
anticipation (Rosen, 1985). Ifthe system keeps on touching the outside that is different
from the inside with respect to logical status, it entails to some entity corresponding to a
contradiction inside of the system. This entity is used as some information of the
surrounding, and that is the origin ofanticipation. The aspect ofanticipation can be
expressed as backward-dynamics (Dubois, 1992, Gunji & Nakamura, l99l). Dubois
expands the idea and general theory of anticipatory systems is established (Dubois &
Resconi, I 992, Dubois, 1997 ; 2000).

The eternal interface ofdifferent logical criteria is the interface ofan observer
and an object. In general, the boundary condition in which an object is regarded as a
particular unity separated from its surroundings is hidden in an observer, and what a
system is observed as an object is regarded as the trivial. Against this attitude, such a
boundary condition also has to be regarded as materials ifone concentrates on evolution
of a system. It can entail to innumerable hierarchical boundary conditions. Of course
there is no way to see whole universe containing infinite hierarchical boundary
conditions, and the natural things by no means see the whole universe. Next question
arises how one can construct the boundary condition, in which an object is separated
from a universe, as materials. This is discussed in the science of endo-physics (Rossler,
1987: 1996, Svozil, 1993), and intemal measurement (Matsuno, 1989;1997, Gunji et al.,
1997). We call such a particular boundary condition materialized boundary condition.

Materialized boundary condition is the growing universe in a universe. Infant's
eyes are typical examples of materialized boundary condition (Gunji et al., 2001a). It is
very difficult to formalize infant's eyes, because infant's eyes contain a touch between
different logical criteria. If one defines a universe by a set and regards the infants'
universe as a subset, there is no different logical criterion. On the other hand, ifone
introduces the mixture of different logical criteria, then there is no consistent distinction
between infant's universe and its surroundings. In this paper, we show new attempt to
construct the infant's eyes based on a set theory. First we define adult's universe (i.e.,
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exo-physics, external measurement, objective perspective) as a concept lattice (Ganter

& Wille, 1999). It also contains two different categories, natural universe and formally

expressed universe, however the relationship between them is well-def,rned in a term of

adjunction. Second, we define infant's eyes in an objective universe. Infant's eyes are

defined by dynamic-all quantifier and by partial-all quantifier. Readers see that both

natural universe and formally expressed universe are perpetually changed, and that is

called evolution. Infant's perpetually gathers his own epistemic data and constructs his

own semantics through which expressed universe makes a sense. That is why semantics
for an evolutionary universe is destined to be local, and the interface ofdifferent logical

criteria can be expressed as local semantics.

2 Local Semantics by Dynamic Quantilier

2.1 Global Semantics Based on Adjunction

First we define adult's universe, or exo-physics in a set theory. It consists of

epistemic universe and conceptual universe. They can be compared to Rosen's natural

and formal systems (Rosen, 1985, Luie, 1985). Epistemic universe is defined by formal

context denoted by K: (G, M, I ),where G, M and sets and 1 is relation between them.

According to Ganter & Wille (1999), any entities can be expressed as a set of attribute

or a set of objects. Various concepts are re-examined in terms of formal concepts (Wolff,

2000). Then, G and M are assumed as a whole set of objects and a whole set of

attributes, respectively.
From formal context, formal concept (A, B) with AC G and Bc M is defined by

A'--B and B'= A (Ganter & Wille, 1999), where

A '  :  {  m e  M  I  S I * ,  
o g e  G  }

B ' :  {  C e G  I  g l m ,  ' m e M  
I .

Among formal concepts, partial order is defined by

A t C A 2  +  A z ' , C A r
A ç  A ' '
A '  :  A " ' .
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( l a )
( l b )

( A r ,  B r ) 5 ( A z ,  B z )  : ( â  A t c A z  a n d  B z c B t ( 2 )

Adult's conceptual universe is expressed as a concept lattice defined by a set of

concepts and the partial order defined by (2). In general a lattice is a partial ordered set,

,S, that is closed with respect to supremum (xUy) and infimum (.x11y) for all two-

elements-sets, {*, y\ with x, y€S. Because of definition (8), all concept lattices are

complete 1221, andthe following statements are proven: for A, A1, Azc G or M,

( 3 a )
( 3 b )
( 3 c )



From statements (3), A' can be regarded as a closure of A. rt means that two operators ' :
PG---+PM and ' ' PM->PG gives a Galois connection, where PG and, PM represent
power sets of G and M. lt isalso proven that that AC B' ëBC A', and this one-to-one
relationship is called adjunction.
Adult's conceptual universe is based on adjunction. Technically, it is stated that the
operator ' : G--+M is left-adjoint to the operator' .. M-G. These operators constitutes
adjunction because it contains all-quantifier, V. Due to all-quantifier, the adult can
survey whole universe expressed as relation, L In other words, all-quantifier is an
expression of adult's eyes. In terms of an adult's conceptual universe some statements
can be proven (for proofsee Gunji et al., 2000b).

Proposition l.
Thereexists  l r€Gandn€Msuchtbat  h ln A ( for 's(€*h)  gJn)  A( forYm(m

*n) Nm) inK(G, M, I) + L (G, M,1) is not distributive.

Proposition 2.
l f , for  vmGM, =h=G such that  h lnfor \naM@ *m)and Nm(i .e. ,  hhasno

relation to m) in K(G, M, I), then L(G, M,1) is a Boolean lattice.

2.2 Infant's Eyes as Dynamic Quantifier

Compared with adult's eyes, infant's eyes are defined by a particular quantifier,
because an infant constitutes his own conceptual universe by surveying a part ofthe
universe. The first attempt to construct infant's eyes is expressed as a dynamic
quantifier. Given an adult's epistemic universe, K (G, M,.l), infant's epistemic universe
is expressed as a local context, Kt(G*,M*, 1 *), where

G *  =  G  U { * }  ( 4 )
M i  =  M u 1 * ' ,  ( 5 )
I *  =  I U I t U I y .  ( 6 )

And { * } and 1* 
' 
1 represents a singleton set. The new relations \ and, 12 defined by

I r :  { ( * ,  n )  |  4 l m ,  v t t ) ^ = A  
\

I z :  { ( 5 ,  * ' )  
|  S I e ,  

o ( ' ) g € â } ,
( 7 )
( 8 )

where I c G, BC M and V(t) called a dynamic quantifier is defined by

vt t t re.X :ê z  e lements ( randomly chosen) in  X,  i f  lV(Dl= n *0:  (9)
:ë o x€X, if lv0)i= 0.
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A dynamic quantifier is designated by number of chosen elements in a set, that is
represented by lV(r)1. Depending on both a chosen subset, A, and time step, t, lV(r)l is
dynamically changed. It is def,rned by; for vtttx€_ A,

( 1 0 )l v ( r+ l ) l  :0 ,
: 1 ,
:  lV(t) l+l  '

i f i  V ( t ) l - -  l x l ;
i f  lV(r) l= 0;
otherwise,

where V (r) is used as a normal all-quantifier of V if I V (r)l: 0.

Infant's conceptual universe, Lt(G",M*, I*), is constructed from infant's
epistemic universe, Kt(G*,M*, I"). It is defined as a concept lattice. On the infant's
conceptual universe, the fbllowing statements can be proven (for proof see Gunji et al.,
2000b).

Proposition 3.
Given a context, K: (G, M, I) and KL(G", M*, I*), where G* : GU {4}, M* :

MU |e\,and 1* = 1U 1r U Iz, It and12 are defined by

Lr(G*,M*, I") is not distributive.

One of the most important properties in the relationship between K (G' M' I) and

KL(G*,M*,1*) is compatibil i ty of a local context. Given K(G, M, f, and Kt(G*, M*'

1*), lK is called a compatible sub-context if and only if II c.u '. Lt (G* , lul* , I*) ---+ L (G'

M, I) is a surjective complete homomorphism, where llo,u is defined by

I I c v ( A , B ) : ( A a G , B À M ) ( r2 )

for any concepts (A, 4e Lx(G*, M*, I*).
A compatible subcontext can be verified by using a double arrow relation 1221.

Double arrow relation gJ Jm e J lc CxU is defined bythe existence of two

sequences of g --gt, 
92, .., gnàîd Ûtt, rrt2, .., ffin:tlt such that

g i  J  m ;  a n d  8 i  | m ; - t  ( 1 3 )

with i : l, 2, .., rt. Note that for ge 6 and nte M, g J m and g 1 m arc defined as

1 r  =  { ( 4 , m ) l 4 I m ,  
Y \ t ) m e O }

I z  =  { ( g ,  e ) l  g l e ,  v ( ' ) g e A } ,

s  J  m  ë  g J m  A  ( ' h ( S c h ) ,  h l m )
g  1 m  ë  g J m  A  ( v  n ( m c n ) ,  g l n ) .

( l l a )
( l  l b )

( 1  4 )
( 1 5 )
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Double arrow relation induces the following theorem; A context (G, M, I) that is a
subcontext of a context (G* , M! ,.1*) is compatible, if and only if (G*\G, M, not( J
J )) is a concept, where not( J J ) represents that J J aoes not hold. It, therefore,

means that

( G * \ c ) '  :  { m e M l s n o t (  I  l ) * f o r  v g e ( c * \ G ) }  :  M  ( 1 6 )
M ' :  {  C e G l g  n o t (  J  J  1 m  f o r  Y  m = M }  =  c * \ c . ( 1 7 )

We obtain the propositions with respect to the interpolation from (G, M, I) to
(G*, M*,1*).

Proposition 4.
Given a local context & (G*, M*, I*) is defined by G* : GU {hl, M* = MU {nl,

and 1* : IU hU 12. If the context (G, M, D satisfies the condition; for a particular s€ G
and all geG (g*s),

s  I n ,  g J n ,  h J n

and there exists only ml andm 2 such that

n ' c m t ' ,  n ' C m 2 ' ,  h l m r ,  h l m z ,  ( g J m t  Y  g J m z )

for all g€ Ç G+s), then for all ge G,

g  I  n  d o e s  n o t  h o l d ,  a n d  h  1  n .

(  l 8 )

( 2 0 )

Proposition 5.
Given rK(G M, I), a global context (G*, M*,1*) is defined by G* = GU {hl, M*

= MU {nl, and /* = IUIr U1z. If the context satisfies the condition; there exists s€G
such that,

s I n ,  h J n

and for alImeM

s I m  ( â  h I m ,
s J m  ê  h J m ,

and there is no r but s such that h'cr', then for aI meM,

h  J  m  d o e s  n o t  h o l d ,  a n d  h  J  n .

(2 r )

( l e )

( 2 2  a )
( 2 2 b )
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a b c d Ê
^  a d \

n( x '-fi\
*'X*u"u *Kàu.

FIGURE 1. Adult's lattice (center) resulting from the context (left,4x4 matrix above
and 2x2 matrix below) is compared with infant's lattice (right) resulting from the
expanded context (Ieft, 5x5 matrix above and 3x3 matrix below). Symbols near
elements represent intent ofa concept. For example, ab represents {a, b}.

From tlese propositions we can finally obtain the following.

Proposition 6.
Given a context, Ko(Ga Mo, h) with sE G satisfying following condition;

if Kn+r(Gn*r, M,4, In*y) is recursively defined by Go+r: G,U {h,\, M,*F M,U {n,\ and

In+r: InU I(h,)U I(n,) where

ab r

tr

n o  g c G  ( s ' c S ' )
= m r ,  m z e M  ( s I m 1 ,  s I m 2 )
n o  n e M  ( m r ' C n ' ,  m z ' C n ' ) ,

I ( h , ) :  { ( h , ,  m ) l v m e  M $ I m ) ,  h n l m ; ' r € M ( s J r ) ,  h , , J r  \
I ( n , )  =  { ( s ,  

" , ) l '  
g =  G ( g *  s ) ,  g J n o ;  s l n n  l ,

Ko is compatible to K,11(see Gunji et al. (2000b) for proof of all propositions).

Fig. I shows comparison between adult's concept lattice and infant's concept
lattice. Because an infant surveys whole universe and constructs its epistemic universe
depending on his own survey and the property of dynamic all-quantifier, there can be
possible other various local contexts.

Ç

I
a b ô

( 2  4 )
(2s  )
( 2 6 )

(27)
( 2 8 )
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3 Local Semantics Based on Partial-all Quantifier

3.1 Infant's Eyes as Partial-all Quantifier

The second and more essential attempt to construct infant's eyes is expressed as
partial all-quantifier. In this scheme, context, K(G, M, r) is regarded as a universe. This
objective universe can be interpolated as far as the context is compatible. For example,
if K(G, M, I) is defined by; 6 = {0, l}, M = {a, b} and I : {\Ia,11à}, resulting concept
lattice (adult's conceptual universe) is a Boolean lattice. Then lattices resulting from all
contexts compatible to K(G, M, I) is also Boolean (Fig. 2).

Even if compatible transformation of contexts is allowed, adult's conceptual
universe is invariant. Because concepts are based on adjunctive operators and normal
all-quantifier, compatible transformation of context just increases the number of
combinations. For example, 2-Boolean concept lattice consists of 0 and l, and it is
obtained from relation lcaxa (it is expressed as lxl matrix). 22-Boolean concept
lattice (Fig.2) consists of 22-elements, (0,0), (0,1), (1,0) and (l,l), and that is just
refinement. That is why lattices obtained from compatible contexts are isomorphic to
one another. In a universe in which compatible transformation of context is allowed,
an infant surveys a universe and constructs his own conceptual universe. In this sense,
difference between adult's eyes and infant's eyes can be expressed as difference ofall-
quantifier.

Etooteut ze fl Ô\,/ s tçç 3
Booleæt 2

Boolean 2

FIGURE 2. The hierarchy of a Boolean lattice derived from compatible lattices.

As well as Boolean lattices, if K(G, M, I) is a context by which a modular lattice is
constructed as a concept lattice, all contexts compatible to K(G, M, I) lead to modular
lattices (Fig. 3).
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Modttlar M,, Ï <t-L/

L : { F A C M I A Ç G } ,
F A : { m e  M l g l m ,  Y p ç c A \

fuladular
1

t l

( 3 1 )
( 3 2 )

3 1 1

Hq;
lVlçclular l,ll.,

FIGURE 3. The hierarchy of a Modular lattice derived from compatible lattices.

Compared with adult's eyes, infant's eyes are def,rned by partial all-quantifier

denoted by Vp. It is defined bY

Y p s e A  ê  V g e A . r ( A ' ) c ) * (2e)

where Bcrepresents complement of B such that BOBc = 0 and Bu Bc = l. The value 0

and 1 are the least and the greatest element in a lattice, respectively. The operation B'is

defined by

B * = { m = G l g l m , 2 m e B \ ( 3 0 )

Defrnition (29) is derived from consideration on the diagonal argument [24]. The

growing universe in the diagonal argument is defined by Intent [l Extent = All-parts l'l

(Atl-parts)c. Because the infant's universe is in a universe, the outside of infant's

universe can be defined by a set of objects separated from a set of attribute. It, therefore,

leads to the dehnition (7). Also for an infant, his own empirical universe is defined by 1

ÇGXM. Using infant's eyes, an infant can construct infant's own conceptual universe

from his epistemic universe. The infant's conceptual universe by a lattice (I, c ), where

an ordered set Z is defined bY

Given a lattice, (L, Ç), infant's new empirical universe, 1*, can be constructed

from a lattice, by the following: (l) At first, for all.BeI, apair (a,8) is defined and o

eG*. (2)If BeL is a co-atom (i.e., if Bc C with CéL, then C : B or C: Iuj, apair (A'



B) is defined and .4 is defined by a singleton set {g} (i.e., a set consisting of one
element), and g€Ç*, where if two atoms satisfy By*82e4(At, Bt)and(A2,82), then
Az : {h \ and h*g = A. (3) lf BrÇ Bzwith .Br, BzeL, (Ar Br) and (Az, B2), define A1
such that for all geA2, geAt (It means that AzÇAr).(4)lf BtcB2 with 81, B2e[,, (lt,
Bù, (Az, 82) and Ar -- Az, add a new element g to G* and define A = Az U {g}. (5) If
there is apaft,(A1, Br),(Az, Bz) with BrcBzand A1 : A2,apply the statements (3)and
(4). Finally we obtain new context K(G*, M, I*).

However, the original empirical universe is not generally re-constructed, and is
perpetually changed. To distinguish infant's universes in time development, the suffix, f,
is introduced. Infant's empirical universe at the fth step is denoted by (t)c G(t)x M(t),
and infant's conceptual universe is denoted by (L(t), c ). Even if a universe is assumed
to be compatible contexts, infant's conceptual universe (i.e. (Z(t), Ç )) and his empirical
universe (i.e. If(G(|, M(t), I(t))) is perpetually changed. Fig. 4 shows an example of
time development of (I(r), c )) and K(G(t), M(t), I(t)).

I

Non-rnoduler
Ort}onotuhr

Non-tisrriÈutivc Distribuduc
Moriluler

FIGURE 4. Time development of an infant's conceptual universe, (L(t), Ç)). Even if
initial contexts are compatible, generated lattices are different with respect to the
distributive law.

Two time developments are shown and the initial contexts, /(0(G(0), M(0), 40ù)
(left) and Kt(G(O), M(0), K0)) (right, surrounded by a rectangle) are compatible in the
sense ofan adult. These contexts, however, lead to concepts that are not isomorphic to
one another. The former one is non-modular ortho-modular lattice and the latter is non-
distributive modular lattice. Final lattices are the same as a Boolean lattice. Fig. 5 also
shows another time development of (Z(r), c )) and K(G(t), M(t\, I(t)), where the initial
context leads to a Boolean lattice as far as a concept is defined by adult's eyes. Due to
infant's eyes, a non-distributive modular lattice is obtained.

-Ë-#*
/ \ / \

#
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\

Non-distributive
l\f,odular

Non- distributive
I\fiodular

FIGURE 5. Time development of an infant's conceptual universe, (Z(l), c)), where
initial context leads to a Boolean lattice if all-quantifier is applied instead of partial-all
quantifier.

Even if initial lattices are compatible (also see Fig. 3), generated lattices are
different with respect to the distributive law. A lattice, I, is a distributive lattice if and
only i fa l le lements x,  y ,z=-Lsat is fy thedist r ibut ive law,x)QUz): (x îy)0(x)z) .
Lattices constitute a hierarchy with respect to the distributive law. The ratio of elements
satisfuing the distributive law in a lattice is decreased in the order; distributive lattice +

non-distributive modular lattice ---+ non-modular ortho-modular lattice ---+ non-ortho-
modular lattice. We call it the hierarchy of distributive law.

3.2 Cellular Automata l)riven by Local Semantics

Thanks to the hierarchy of distributive law, infant's eyes are significant if a
lattice is used as semantics. How does one use a lattice as semantics? V/e define a
particular lattice polynomial as syntax. It is an expression consisting of variables,
operators O, U and c (complement). If elements of a lattice are substituted into a lattice
polynomial, it can be computed. It, however, depends on a lattice structure. Such an
example is shown in Fig. 6. We here give a transition rule of elementary cellular
automaton expressed as a lattice polynomial (right, above). This transition rule
transforms a binary sequence if it is applied to all cells with synchronous updating. For
this transition rule a non-distributive modular lattice (left) is used as semantics. Because
the input and output of computation is expressed in the form of a binary sequence,
elements of a lattice are divided into either 0 (white circle) or I (black circle). Assume
that the input is (1,0,0). First these values are mapped to elements of a lattice. If the
input is l, then it is mapped to elements of a lattice painted black. If it is 0, it is mapped
to elements painted white. After that computation following a lattice polynomial is
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actualized in this lattice. Because this lattice is not distributive, complement of a
particular element is not uniquely determined. Imagine that the input (1, 0, 0) is mapped
to (a, c, c) in a lattice. For c, both a and b are complements, because they satisfy the
def in i t ionofcomplementof  a suchthat  c l tx :0and cUx:  l .  Symbols0and I  in the
defrnition of complement are the least and the greatest value, respectively. If c" = b, the
output of a polynomial is mapped to I because an element, d, corresponds to I in a
binary expression. If c" = e, the output of a polynomial is mapped to I because an
element, c, corresponds to I in a binary expression (see calculation surrounded by a
rectangle). That is why it is inevitable to introduce, what is called, a perturbation in
calculation, ifa lattice is not distributive.

b

a/*r l )  = fG2.1(ù,  a/d,  a1.1(à)

= !\+ Jc r)

= ( x . J l J . . n  z ) U ( r l t  S ' . n  * )

b,  ' r= (Lo ,o)

(x n z) =(e, a, c)

a*(t+l) = (r. n c. fi c) u (r 1l a. fl a*)

= ( c f l  r o  a )  U ( r n  r n  d

= Q U 5 = 5 = l
a r ( r+ l )  = ( cn  Ên  a )  u ( r  n  Én  É )

- 0 u  0 = 0

FIGURE 6. It shows an example of calculation of a given lattice polynomial based on a
non-distributive lattice. Because complement of an element is not uniquely determined,
the output is not uniquely determined. See texl

We propose an abstract model of the learning process of an infant. The task of
learning is uniquely determined, if semantics is assumed to be global. In real learning
processjust an image ofthe task is acquired by a subject. It is very difficult to coincide
the subject's image of the target and the image determined in advance. In other words, a
subject always constructs his own image of a task in surveying his own epistemic
universe.

In this perspective, we define the task ofleaning process by the calculation ofan
elementary cellular automaton, expressed as a lattice polynomial,

a{t+l) ="f (ak-tç), a(t), atc+tç))
=  ( r c O y . n z c ) U ( x À y î z ) ,

3r4

( 33 )



where r, y and z represents ak-lç), aldt) and ak+l(t), respectively. Given a binary

sequence of ô(0) : (at(O), a2Q), a2(t),...), the transition rule (33) is applied to it with

synchronous updating and periodic boundary condition, and the next binary sequence is
generated. This procedure is iterated. Compared to the learning process, generated
binary sequences are the images of the task. Actual-ization of the task is possible if a
subject surveys his own empirical universe and constructs his own conceptual universe
that is local semantics.

The interaction between the image of the task and local semantics is defined as
follows. A binary sequence of à(t) indicates the degree of compatible transformation of
a context, K{G(t), M(t), I(t)), is determined by some information of â(t). For the sake of
convenience, we define that (2xc1(r)+a2(t))- rows and columns are added to a context,

K{G(t), M(t), I(t)). Such a transformed context is denoted by K,*(G(t), M(t),I(t)).From
K,*(G(t), M(t),I(t)) and partial-all quantifier, a lattice, (L(t), c' )) is obtained. Then, ô(t)

is mapped to (L(t), c )) by/:{0,1}-(I(r), c ) expressed as/(0)=w andfll):q, where w
is an element of a lattice corresponding to 0 in a binary expression, and q is an element
of a lattice corresponding to l. After this mapping, a lattice polynomial is calculated,
and the output is mapped to a binary sequence by g : (L(t), Ç )+ { 0, I } expressed as for

all r in (L(t1, c7, S@) =y withfu) : x. Simultaneously next context Kùr(G(t+l), M(t+l),
(l+l)) is also calculated by the procedure mentioned before. Initial context r(0(G(0),
M(0), (0)) is given as G(0):M(0)=empty.

FIGURE 7. It shows time development of an elementary cellular automaton (33), where
a lattice used as semantics is perpetually changed due to the partial-all quantifier. PB
represents a sequence of (a1Q),a2Q\, and the corresponding lattice is shown as a Hasse

diagram.

Fig. 7 shows a typical time development of this model. In spite of a unique
transition rule, thanks to perpetual transformation of a lattice, this system can show
complex behavior, as if the transition rule was changed. It results from infant's eyes or
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partial-all quantifier. If one uses adult's eyes or all-quantifier instead of partial-all
quantifier, a lattice cannot be changed along time. Because just a compatible
transformation of the context, a lattice is isomorphic along time if it is constructed by
adult's eyes. For this initial context, it keeps Boolean lattice.

Generated patterns are often perturbed and one can see the drastic change like a
horizontal line. It results from autonomous perturbation due to the infant's partial survey
in his own epistemic universe. Compared with a simple model of the thermal bath, the
domain in which perturbation can be applied is always changed.

4. Conclusion

Consciousness exists in the interface ofthe growing universe in a universe. If
one compares the inside and the outside of the growing universe to the expression and
quolia, one can find the essence ofthe problem ofconsciousness. For example, ifone
feels pain, he can say "Ouch!" that is a particular expression ofthe qualia ofpain. In this
scheme, one generally imagines that qualia of the pain causes the expression of the pain,
and that scientists at an objective stance can observejust expressions ofthe pain. That is
why one concludes that science cannot approach what qualia is and/or the origin of
consciousness. Is it easy to prove that the expression of the pain always follows qualia
of a pain? one sometimes feels pain when another one tells him "Aren't you fîne?"
There is no definite causality, and there is only distinction between qualia and pain.
One, therefore, concludes that feeling quolia just appears when a definite distinction of
quolia and its expression appears. The interface exists and it brings forth the distinction
quolia and its expression or feeling the quolia.

The problem on the origin of consciousness is as same as the problem on the
interface ofthe growing universe in a universe. It is very hard to express this aspect. On
one hand, one finds difference oflogical criteria between inside and outside, and on the
other hand one has to pay attention to the contact ofthe inside and the outside. It is
known that the mixture of different logical criteria entails to a contradiction in a set
theory. Against this fact, one has to construct the interface of different logical criteria,
which cannot falls to a contradiction.

In front of this problem, one has to focus on the proof of a contradiction in a set
theory, for example, the diagonal argument. It is clear to see that a contradiction results
from surveying the wholeness of infinite universe. It looks like fallacy because infinity
is defined by impossibility of surveying in the finite sense. The question arises whether
a contradiction by the diagonal argument is true contradiction or not. Ifone takes the
sense of finite things, one cannot survey a whole universe. It makes us the sense of finite
things called infant's eyes.

we here propose two kinds of formal infant's eyes, dynamic quantifier and
partial-all quantifier. Especially, partial-all quantifier mimics infant's eyes. we
prescribe infant's eyes as how to survey a universe from the growing universe. Then
first we define a universe in a set theory. It is expressed as a formal concept lattice. A
universe is recognized as the universe, and then the universe is objective but epistemic.
A universe is expressed as the infinite hierarchical epistemic universe, and that is
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expressed as a hierarchy of compatible formal contexts, and a hierarchy of isomorphic

lattices. Given a universe, an infant surveys a universe by his own eyes. As a result'

infant's conceptual universe in the form ofa lattice is constructed. In our model, adult's

objective eyes are expressed by all-quantifier, and infant's eyes are expressed by partial-

all-quantif,rer. Only thanks to infant's eyes, generated lattices are changed in spite of

compatible contexts.
An infant no longer surveys a whole universe, butjust a part ofa universe. It

results in non-contradictory leaning, development and evolution. If one remembers that

a contradiction is a particular expression of infinite consuming time in a term of a

computation theory, partial survey leads to an efficient consuming time and makes

saving of time-resources possible. The partial-all-quantifrer may be an adequate device

to save time-resources in terms of consuming time.
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