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Abstract
This paper describes the possibility of incursive proof in classical formal theory.
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1 Introduction: Formal Theories in General

Aformal theory S is defined when the following conditions are satisfiedr:

l*) There is a set of symbols which is at most countable and which is the set of the
symbols of S. A finite sequence of symbols of S is called expression of S.

2*) There is a subset of the expressions of S which is called set of the well formed
formulas2 (abbreviate with wffs, singular wffi. lJsually, there is an automatic
procedure to decide ifany expression ofS is wff.

3*) There is asubset of the wffs of S which is called set of the oxioms. S is called

axiomatic iff there is an automatic procedure to decide if a wff of S is axiom.
4*) There is a finite set of relations4,...,& among wffs that are called inference rules.

For every 4 there is such a sole integer positive 7 that for every set of 7 wffs and
for every wfî g. it can be decided if the 7 wffs are in relation n, with 9. In this
case A is called direct consequence ofthe; wffs by4.

Aproof in S is a sequence At,...,A,,. of such wffs that for every i, A, is axiom or
direct consequence ofa subset ofprevious wffs.

A theorem Ain S is the last wff of one or more proofs. Such proofs are called
proofs of A.

S is called decidable iffthere is an automatic procedure to decide if any wff of S is

a theorem.

I We consider only standard logic with non-contradiction principle in this work and we use Mendelson's

formalism (t). fnis choice has been done for the wide circulation of such a logic and such a formalism. We

think that the hyperincursion principles (see above) can be applied to any logic with any formalism but we.do

not prove this 
-fact 

in this pàper for space reasons. However, our convinction is based on the following

achièvements: Fuschino proved the reducibility of fuzzy logics 1o standard logic (2), Rutz proved the

reducibility the many-valued logics to standard logic (3) (see also Grappone (4)), Malatesta proved that non-

classical lôgics cannôt take a stép without a stock of tautologies belonging to classical one, which are laws of

non-contradiction. Therefore either the set of laws of a non-classical logic is a proper subset of the classical one

or there is an intersection between the sets of laws ofclassical logic and a non classical one, wilhout which the

last cannot work (5).
2 Assume That a well formed formula is a symbol which means a given proposition in S.
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A wff âof S is called consequence of a set I of wfis of S iff there is a sequence
A,,. . ., A, of such wffs that for every i, A, is axiom or direct consequence of a subset of
previouswffsor A,el . Suchasequence At,...,A,,iscalledproof(ordeduction)of A

from f . The elements of f are calledhypotheses or premises of -4. Read 'r l A "'The
wffs of the set F are premises of 4", in other words, "The wffs of the set F deduce
A'.If | =A, then rl A iff e is a theorem. So, we can denote that A is a theorem
with the expressions 'Al A' and'| A'.

The concept of consequence has the following properties:

l * * )  I f r E l  a n d  r F  A , t h e n  L l A .
2**) r>A i f f  thereissuchaf ini teset a that Âgr and Ll-  A.
3**) I f  I  deduceseverywfiof  I  and al-9,then faA.

The properties 1**), ..., 3**) of standard proof theory suggest the way to
introduce hyperincursivityr in proof theory. As the (hyper)incursive processes have a

' 'The recursion consists of the computdtion of the future value of the variable vector X(I+l) at time t+l from
the values of these variables at present and/or past times, L t-l,l-2, ... by a recursive function: X(t+l) : /(X(t),
X(t-l),..., p\ where p is a command parameter vector. So, the past always determines the future, the present
being the separation line between the past and the future. ... Starting from cellular automata the concept of

fractal machines was proposed in which composition rules where propagated along paths in the machine

frame. The computation is based on what I called 'lNclusive TeCURSION', i. e. INCURSION ... An incursive
relation is defined by: X(t+l):/(..., X(t+l), X(t), X(t-l), ..., p) which consists in the computation of the
values of the vector X(t+l) at tine t+l from the values X(t-i) al time t-i, i = 1,2,... as a function of a cotnmand
vector p. This incursive relation is not trivial because future values of the variable vector at time steps t+1,
t+2..,. must be known to comrye them at the time step t+1. ... tn a similar u,6y to that in which we define hyper
recursion when each recursive step generates multiple solutions, I defne HYPENNCURSION. ... I have decided
to do this for three reasons. First, in relativity theory space and time are considered as a four-vector where
tinte plays a role similar to space. If time t is replaced by space s in the above delinition of incursion, we
obtainx(s+l)=/(...,X(s+l),X(s),X(s-l),...,pland nobody is astonished -alaplacean operator looks like
this. Second, in control theory, the engineers control engineering systems by defining goals in the future to
compute their present state, similarly to our human anticipative behaviour. ... Third, I wanted to try to do a
generalisation of the recursive and sequential Turing machine in looking at space-time cellular aulomara
where the order in which the computations are made is talæn into account with an inclusive recursion' (6\

(see also (7)). This innovative mathematical perspective is relevant from a logical viewpoint. Ifaproo/inS is a

sequence Ar,...,A, of such wffs that for every i, â- is axiom or direct consequence of a subset of previous

w f f s , t henwecanwr i t esuchap roo fas  A t ( t \ , . . . ,A , ( t +n - l ) . The las t f o rmu lao f t h i sp roo f , i e .  A , ( t + t t - l ) ,

is calculated in S by inference schemes of S and by axioms ofS. Assume th€ inference schemes of S as n-adic
(with an opportune n) operations which have the deduced çff as achievement and the deducing wffs as

arguments.  l f  A,( t ' ) , . . . ,Ak(,  + t  -  l )  are the axioms which appear in A,( t \ , . . . ,4, ( ,  + n-  l )  and /  is  an

r -

opportune combination of the inference schemes which appear in A,(t\,..., A,(t + n - l\ and that we assume as

operat ions,  then .4,( r+n- l )= f lA, \ t ) , . . . ,Ak(t+f t - l ) ) .  I t  is  very easy to proof  that  /  is  a recurs ive

*,
function. But the most frequent logic problem is to decide if a given wtTis a theorem in a formal theory S, i. e. if

it has a proof in S. This fact means to return behind from the theorem to the axioms which deduce it. Given the

previous considerations, such a decision corresponds to calculate functions as F, such that

294



set representation, we represent the wff in form of sets. Consider the countable set

{.,", ,ti, }of allthe possible sets that deduce A. As {al-nit is very easy to

prove that {"I=}r:. Thus every distinct wff has a distinct set representation. So, to

develop any formal theory we can only consider set of *'fi and use an set language: e. g.
we can replace r l- -a with r = {-4} .

A first consequence of such an approach is an ensemblist definition of theorem
and axiom: â is theorem or axiom itt {nl=a4,i. e. .4 is theorem or axiom in any formal

theory iff it is deducible from axioms without other premises.
Now we can consider the meaning of the set operation in a formal theory (8).

1**x) If {c}> n^a {ol.a, then {cIt{."} and {ol={al. rhus

{c},{o}={a}-{a} and {c}u{ol- a,a. Hence, i f  {c}F Aand {DI I a then

{c}. {o} - A,R. In particular, {ei. {aft A,E.
2***) I f  {al- nana {c}l- A,then {aj={al ana {c}={a}. rnus {aln{c}=-la}

and {r}n{cl- o.Hence, i f  {s}F A and [c]- n, then {a}n{c}- n.
3**'t; Let (l be the collection of all possible premise sets. Thus, for every lo\.

a={al. Hence, for every {a}, w; a.

ret w{a} be or{e}.

consider w{a}a{al. I t  becomes (o r{e})^{a}, i .  . .  (o^{o})t({a}n{a}), i .  e.

{o}r{n}. Also, i f  {e}={o} then {z}r{e}=o. rhus {a};ais equivalent to

{a l t {a l=o.
6***; {a}r iB}=a ana {o}i{e} =a if l  {al={a}
7**t') Given the Cartesian product of two sets 't', consider the example

{"} " tp} = [", Ê]. tf [cx, B] is a sentence, then it can be interpretated as " Elements of

o in first place deduce elements of, p in second place and vice versa." Let

{n0,...,n,,,...} be the place set5. to 19} be the sentence " (There are) elements of

/ \
A,_,( t+n- l - i )=f \n,1t+n-t1, . . . ,A, , ,_,( t+n- l - i+ l ) ) .  The incurs ive nature of  th is last  equat ion is  evident .

Clearly, if/ requests a parameter choice, then F is hyperincursive.
a This formula means that the set ofthe premixes which are necessary to a theorem or an axiom be true is void, i.
e. any theorem or axiom is true alwais and not only under particular premixes.
t Grappone has proved that any polyadic predicate is equivalent to a predicate built only with monadic

predicates and sentential connectives (9). He has given the formula
, ( ,  \ ,

Ai$,,...,x,,)=nl =,(,ej,,(rr))A),(x,) lt=. ** introduced bv Malatesta with the name of polltadic
' = r \  r= r  )  r l

4* * : |<)

5**{.)

sequence implication (10)), where
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{cr} in first place" and, for a single element e, let 9 be the sentence " (There are)

e in first place". Given any *, upply the monadic operations tor,. So the
t v i

sentence[c,p] become. " {9}F I and {9}t- 9",
L n r J  

L t  
[ " ' J  

L 0

f$"ql"f$"$l In general if the potiadic cartesian product
f €no  

n , )  [ .@n ,  no  
)

cr,rxcr2x...xd,, is the sentence composed * tT terms d,q2,...,a,,, then its

premixe set is equivalent to UlS"nPI Ir is clear that, e. g.
r=01 , r ,  l=owtv  i  I

\ .r*, l

{q} {"} {"}-!-L\J-L-I = *, and so on for every set operations.
lto ltt tto (, 'lr

2 From Gentzen's Natural Deduction to Anticipatory Deduction

Themethodof natural deduction is owed to Gerhard Gentzen (ll). Gentzen listed
the following rules that we describe in standard language in Table L

rr-Introducrion n-gti-inatiorfabh 
1: 

-Gnentzen's 
Rules 

v-Erimination

c ,FFanÊ oap |_c r .  u l * cvp .  a "p , ( {a }F r ) , ( t p } t_ r ) f r
c t , r . Ê F Ê  Ê F a . r B  

\ (  J

>-Introduction :-El imination -- lntroduction --El imination

( "Fp)Fa,Ê o,c 'pF p (aF [coNrn])F -o.  (o , -at  [courn. ] ) ,
[corrn] f o

There are two other rules of public domain to simpliS the equivalence calcule:
(12)

- l|,(x,)v ...v - At,,_,(x,-,)v lj,,(x,)v - A),,,,(x,*,)v - A),"(x,,) (9). We can develop this previous

achievement for  th is paper by put t ing Ai i ,@,, . . . ,x , , )=(xo,-r , , . . . ,4, )  = 
5(- ,<o, , , t r , l ln , ,  

( r , ) l  and f inat ly :
'-"\ r=o )

tc.!x)=L. So, we can consider 
{",. ,r,} as a place predicate set.' n

t 
[CONfn.] is the logical contradiction, i. e. any sentence whose truth value is always equal to false.

e.
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Table 2: Public Domain Rules
=- lntroduct ion =-El iminat ion

a - F , F > c r I  u = p  c t = p  l -  a :  P , c = Ê  F  P '  c r

The rules of the tables I and II permit
Gentzen's method. E. g. we have:

us to deduce various tautologies by

Hypothesis
Hypothesis
Hypothesis
1,3 r-Elimination
3,5 --Elimination
3,5 >-Introduction
2,6 :-Introduction
1,7 : -Introduction

1  ( 1 )  p ) q
2  ( 2 )  q ) r
3  ( 3 ) p
1,3 (4) q
L,2,3 (5) r
1 ,2  (6 )  p ) r
|  ( 7 )  ( q > r ) = ( p = r 1

(8) (p = q) = ((q = r)= (p = r))

We start from some hypothesis and afterwards we apply Gentzen's rules untill the first
column is void. Then, the formula in the same row and in third column is a tautology.
(Pl) is based on the calculus of premise sets: the premise set of a tautology is obviously
empty because a tautology is a theorem. E. g. : {tr = ù = ((q = r) = ( p = ))} = O.

Consider the properties l***), ...,7***) of a formal theory. These and Gentzen's rules
permit us to obtain reversible rules that define standard sentence logic as a formal theory
and permit us to build an anticipatory deduction. We have:

l#) {a}r-l{O} f o,Ê by l***) and a,pl- crrp by n-Introduction, hence

{"}r{p}F c, .Ê by 3**),  thus {"}"{p}={a"p}.  cr, .pFa ,^.-El iminat ion and

cr^pFp r.-El iminat ion, hence i""Pl={a} and {""p}={Êi,  .o {""Ê}={ct} t , , {n}.
Finally, from ia " 

p]> {o} and {a " 
p}= {p}:

{a ̂ p} = 1"1, {O} ( l#).

2#) of-ovp by v-Introduction and FFo"Ê by v-Introduction, hence

{c,}={o"p} *d tp}={ovF}, hence{c}n{F}:{c'p}. o"p,({a}t-t),({p}lr)t-r bv v-

Elimination, so ({c'} r t),({p} r r) I ({o"p} t-y), ttrus ({a}^{F} r r) r ({a"Ê} ;1), hence

{.}"{n}={r}F {o"F}'{r}, so {o"p}={'}"{p} by 1**),. . . ,3**). Finallv, from

1"]n{o} = {c, " 
p} and {c, " F} = {o} ̂ {0}:

{o"p}={'}n{o} (2#).
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3#) (sF P) F a,Ê ty =-Introduct ion, so {p}t i "}  =aS- {"=p}=o by 5***),  thus

{p}t{"}={"=p}.  cqcl 'pFp by ' -El iminat ion, so a=ÊF(crFÊ), thus

{"p} =a- {pI \ {a}= a,hence {"-B}={o}r{" i .  n* {p}t t " }=c{"} . , {F}.  r inat ty,
n'o* {o} r{"} = {"' p} and {o = Ê} = {p}t{"}'

{" = p} = {o} r {"} = c{"}^ {o} (3#).

4#) (aF [coNrn])f 
-a by --Introduction. 

[coNrn.] is the contradiction symbol.

To represent [coNrn.] in formal theories consider that a contradictory sentence deduces

every sentence in standard sentence logic. (5) In other words, for every wff a,

{[coNrn.]]={o}. eut this relation is true iff {[coNrn.]]=@, where lll is the set which

includes all the possible premise sets. So we can write the --Introduction:

( " F o ) F - a ,  s o  o r { " } = a l { - r l } = o ,  t h u s  c { a } = a l { - u l = @ ,  h e n c e

c{a}= {- cr}. (",- 
" F [coNrn.]) and [coNrn.] F o by --Elimination, so

t -c r } . ( { " } f  o ) ,  thus  { - " }=@}6 '+{o}=a,  hence { - " }=o l6 {o}=a,  so

{- "} 
= c{cr}. Einaty, from @{a} = {- c} and {- a.} = c{c,} :

{^' c}= c{a} (4#).

{"  = O}r{0, c} = {a = P}.

{ "=P}={ "=Ê}  and

{cr ' p}v{F = c}: {a = P}

(s#).

5#) cr'9,F>cl- c,=Ê by =-Introduction, so

cr=p|-a:B and cr=pl-B>c by =-El iminat ion, so

{" = p} = {9 = o}, thus {a = 9} = {a' B} v {F' cr}. Finally, from

and {c = Ê}= {"  =0}u{0 =c} :

{ "=Ê}={a=Ê}r . , {F -a}

Rules (1#),...,(5#) permit us to obtain anticipatory proofs t. E. t., consider the proof
(Pl) in anticipatory form:

Start:

' 
A proof is anticipatory if it is built by starting from the theorem which has to be proved.
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{ { n = ù = ( ( q = r \ : ( p : r ) ) }  l ( l ) l  t r '  ù = ( ( q = r ) = ( p = r 1 )  l H y p o t h e s r s

Bv rule (3#):

Bv rule (3#):

rules (1#) and (3#):

( p - q ) ' ( ( q > r ) > ( p = r ) ) (l),(2) :-Introductionq = r ) = ( p > r )

Hypothesis( q = r ) > ( p = r( q = r ) = ( p > r )

Hypothesis

( q = r ) = ( p > r ) f + l p = q (s) ( p = q ) = ( ( q = r ) = ( p . r ) ) (l),(4) =-lntroduction

! | q ) r (4) ( q = r ) = ( p = r ) (2),(3) : -Introduction

(3) Hypothesis

\ q ) r ) (2) Hypothesis

p ) q ( l ) p ) q Hypothesis

( q  = r ) = ( p - r ) l r l p =  q (7) ( p . q ) r ( ( q = r ) = ( p = r ) ) (1),(6)' -Introduction

-  l a  -  ' (6) ( q = r ) = ( p > r ' t (2),(5)' -lntroduction

r + (s) (3),(4)'-Introduction

(4) r Hypothesis

p (3) Hypothesis

( q - r ) (2) q ) r Hypothesis

( t ) p ) q Hypothesis

( q = r ) = ( p = r ) l t l p = q l (8) ( p - q ) - ( ( q . r ) = ( p = r ) ) (1),(7)'-Introduction

x .1q  )  r (7) ( q = r ) = ( p = r ) (2),(6)' -Introduction

1 (6) (3),(5) =-Introduction

(s) r Hypothesis

p L,, p ) q (4) q (l),(3) --Elimination

p (3) Hypothesis

. q ) r ) (2) q ) r Hypothesis

p > q ( 1 ) p ) q Hypothesis
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rules and
( q = r ) = ( p > r ) l + l p = q (8) ( p -  q ) = ( ( q  = r ) = ( p > r ) ) (l),(7) :>-Introduction

p > r + t t q  )  r (7) ( q = r ) - ( p = r ) (2),(6) > -Introduction

p (6) p = r (3),(5) : -Introduction

q q ) r (5) r (2),(4) =-Elimination
p IJ p ) q (4) q (1),(3) =-Elimination
p (3) p Hypothesis
(q= r ) (2) q  ) r Hypothesis
p ) q ( l ) p ) q Hypothesis

To veri$ if 1p ' q) = ((q > r) = (p = r\) is a theorem we can consider the first column
of  i ts  proof .  We have:  { (n,ù=((q=r) : (p: r ) ) }  = {@-r) '1p=r)}+{n-o}  =

({r =.} * {e ='}) + {r, o} = (({ } - {o}) + {a "}) * {r = e} =

= ((({e}, {o = "}). {r}) * {a =,1)* {n = o}=
= ((({r} , { r  = q!u{e='}) . { r } ) . {  o ' , } )*{n= f i  =

= 
[((1r1, 1c{ r} ̂  {a}), (c{e} ̂ {,"})) " 

c{ r}) ̂  c(o{e} ^ {,})) ̂ o(c{r} ̂ {c}) =

= (({r}^{a}^{.}nc{r})nc(c{e}^{'}))^c(c{r}^{e}) =
= (ant(w{o}^{,}))nc(c{nl^{ol) = o

3 Incursive Proofs in Standard Sentence Logic

To develop incursive proofs in standard sentence logic given below it is necessary
such inference schemes be completely reversible. A complete set of such schemesthat

is:

Vo = I  (01")
V'(p) = p (02")
v'(p,ù = pvq (03')

Y'(pr...,p,) =Y'-t(p,,...,p,-) v p,, (04t)

Y ' ( . . . , p , , . . . , p , . ' . )  =  (05 ' )

= Y" ( . . . ,  P, , . . . ,  p , , . . . )

n ' (p ,q )  =  pvq  (14 ' )

A ' (p r , . . . ,p , , \  =A ' " t (A , . . . ,p ,_ )  v  p , ,  (15" )

A " ( . . . ,  p , , ' . . ,  p , ' . . . )  =  A " ( . . ' ,  p i ' . . . .  p , , . ' . \  ( 1 6 " )

A" ( . . . ,  p , , . . ' , -  p , , . . . )  = -  I  (17" )

P , )  P i =  A ' ( . ' . ' P , , . . . , P , , . . . )  =  ( l 8 t )

=  n ' - '  ( . . . ,  p , , . . . , , . . . )
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 " ( v ' '  (  p .  . . . . ,  p ,  \ , . . .

. . . . V ' " (  p ,  , . . . .  p . .  \ \  =

;;
= !tn"(a, ,...,P,,,"))

;:, ='

^ ' ( . . . , -  1 , . . )  = -  I

Y '  ( . . . ,  p , , . . . , -  P t , . . . )  =  |

v ' ( . . . , 1 , . . . )  =1

v " ( n ' '  (  p ,  . . . . .  p .  \ . . . .  ( 1 9 ' )

. . . . x ' "  (  p . . , . . . ,  p . .  \ \  =

)i,
= A tv"(a,,,..., p,,,.))

;::j

P,=  ? ,+Y" ( . ' . ,P , , . . . ,P , , . . . )  =  (20 " )

=  v ' - '  ( . . . , , . . . ,  p r , . . . )

z l ' ( . . . ,1 , . . . )  =  ̂ ' - ' ( . . . . , . . )
* ( p " q )  =  -  p v - q
*  n =  n

p ) q  =  -  p v q

p = q  =  ( p = q ) n ( q =  p )

(06)

(07')

(08")
(0e)

v ' ( . . . , -1 , . . . )  =v* ' ( . . . , , . . . )  (10I
- ( p v q )  =  -  p ^ - q

A o = l
n'(p) = p

(11 ' )
(12")
(  13 ' )

(21")
(22")
(23")
(24")
(25")

An example of incursive proof with the previous inference schemes is given
below:

p ) \ q )  p l
- pv (- q v p\ (24")
Y'(* p,q, p) (04)
1 (08")

This proof is completely reversible, in fact:

I
v'(- p,q, p) (08')
*  pv(-  qv p)  (04 ' )
p ) (q ) p) (24")

is also a proof. The hyperincusive nature of rules 1o),...,25o) is evident8.

4 Conclusion

We have proved the possibility of a hyperincursive proof theory which is
perfectly coherent with standard proof. The greatest advantage of a hyperincursive

sThe 
incursive nature ofthe rules lo),...,25o) is evident because they are totally reversible and therefore they

generate proof totally reversible: thus anticipatory proofs (proofs which start from theorems which have to be

proved) can also be generated.
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t .

2.
3 .

4.
5 .
6.

proof theory is the possibility of building a proof by starting from the theorem instead
of from the premixes. But this is the real application of the logic. In concrete
development of sciences, we do want to generate theorems from premixes in a random
waye which is the only way that natural deduction permits, but we want to verify if a
given wff is a theorem in our mathematical theories. Hyperincursive proof theory
permits this.
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o 
Obr"rv" that we cannot anticipate what theorem we will proof when we apply Gentzen's rules for natural

deduction. Instead if we must prove a given a priori theor€m, to find their proof is an anticipatory calculus.
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