
Anticipation, Induction, and Learning

Bertil Ekdahl

Lund Institute of TechnologY
School ofEngineering

Box 882, SE-251 08 Helsingborg. Sweden
Fax: +4642176337 - E-mail: Bertil.Ekdahl@cs.lth.se

Abstract
A system is considered anticipatory if it has the ability to foresee the

consequences of an event and act in a way it is adapted for. In order to make such
judgments anticipatory systems must possess some kind of description of their

surroundings. which is used in the calculation of an appropriate action. In many cases

it is suffrcient to have an algorithmic description to follow and some anticipatory

systems do choose their actions in a completely algorithmic way.

A more developed anticipatory behavior is displayed by systems, which not only

possess a description but also a model of the surroundings. Those systems have an

intrinsic conception of their surroundings. which they are able to reason about. This

kind of anticipation is called model-based contrary to the description-based behavior,

which characterizes those systems that slavishly follolr'algorithmic rules.

In order to take advantage of model-based behavior it is necessary to be able to

properly describe the surroundings in terms of hoil' they are perceived. Such

description processes are inductive and not recursively describable. That a system can

perceive and describe its own surroundings means further that it has a learning

capability. Learning is the process of making order out of disorder and this is

precisely the most distinguish quality of inductive inference. Genuine learning

without inductive capability is impossible.
The implication of this is that systems that have a model of the surroundings are

not possible to implement on computers nor can computers be leaming devices

contrary to what is believed in the area of machine learning.

Keywords: Anticipation, Anticipatory systems, Induction, Learning, Machine

Learning.

1 lntroduction

In a certain sense most systems can be considered causal because of their behavior

being a consequence of an outer cause. Even organic systems (living systems) can by

evolution be considered developed by cause but the way living systems react to a

cause is in most cases quite different from the way non-living systems react. All non-

International Journal of Computing Anticipafory Sysfems, Volume 8' 2001

Edited by D. N{. Dubois, cHAos, Liège, Belgium, ISSN 1373-5411ISBN 2-9600262-l-7

living systems react in the same way on a given cause contrary to living systems
whose reaction on one and the same cause can vary widely between different species
and even among individuals within a species. The reason that living systems react
differently than the non-living is of course that the former are subject to the
evolutionary process acting on phenotype to which there is no counterpart in the
systems studied in physics. An outer pressure (circumstance) does not change the
rules that govern those systems: the rules remain the same (even if the way we
describe them may be refined and more accurate).

Instead of the mere cause it is the ability or lack of ability to choose action on a
given or expected event that normally categorizes systems. If a system lacks the
means to influence its own reaction on a future event, it is usually called causal or, as
will be used here synonymously^ reacrive. Here I refer to causality as it is used in
physics as explained for example by D'espagnat (1999, p.94): "[...] two familiar
milestones still standing erect. One is the possibility of keeping a nonrelativistic
causality principle in the technical sense of the term: no property at a time / is
determined - or even affected - by the events that may occur thereafter." Systems
that, contrary to the reactive, can foresee the outcome ofa cause and act appropriately
in order to avoid unwanted consequences are called anticipatory. In the technical
sense it means that the behavior of anticipatory systems at a certain moment is
affected by future possible events. or in other words. may take future events into
consideration in the current situation. As an elucidation of the two principles we may
consider a marble moving against a wall. The marble, as a consequence of the
causality principle, has no possibility of itself to avoid hitting the wall. Had the
marble been anticipatory it would foresee that it was going to be broken into pieces
and accordingly act in order to avoid this harmful consequence.

An outside observer cannot explain the behavior of an anticipatory system without
knowing the system's intrinsic judgment of how its surroundings will affect it.
Evidently, in order to make such a judgment anticipatory systems must possess some
kind of description of their sunoundings, u'hich is used in the calculation of an
appropriate action. Reactive systems do not possess such descriptions. In those cases
the description is solely in the mind of the obsen'er. This makes it possible to
categorize systems from a linguistic point of view: systems with and without an inner
description.

Anticipatory systems. which have an inner description, can further be divided into
two disjunct classes. One that consists of those systems that possess only' a description
without knowing its interpretation and another consisting of those having a model in
the semantic sense. Ekdahl (1977) has classified them as description-based and
model-based anticipatory respectively due to their different linguistic capability. The
characteristic of the description-based anticipatory systems is that they have a definite
description to follow. Such a description cannot be partial since it should imply that
there were situations for which there was no description. Accordingly, it means that
the description to follow is algorithmic and consequently that there is no way going
outside the description. This is true even if we think about a self-modiSing program
(algorithm). From a computational standpoint, we can imagine such a program as

276

computed by a universal Turing machine that first simulate the behavior of the Turing
machine x (x is the index of the machine or, equivalently, the program coded as a

Gôdel number) with input a, written as [x]a). and when that execution is finished,

change to the behavior of the Turing machine tyÏ"i . (See Papadimitriou (1994) for a

good treatment of Turing machines.) Here the programs [x]and b'] *" both supposed

to be total since our starting point was an algorithm. Despite changing the program,
this is still a description to follow that is decided from the beginning by the
programmer and always terminate and there is no possibility for the universal Turing

machine to compute another algorithm than [x] *a [y] in that order. Thus, having an

algorithmic description to follow. the description-based anticipatory systems have no
explicit idea of the world around them, as is the case for example for cerebral
systems. Contrary to description-based systems, the model-based have models in the
semantic sense and are able to reason about their models (in a metalanguage to the
model) and have also the ability to change the model if necessary. A planning being is
an example of a model-based anticipatory system while an insect can serve as an
example of an anticipatory system that is description-based.

In this paper it is argued that in order for a model-based anticipatory system to be
able to produce descriptions on its own based on its model of the surroundings it has
to have an inductive capability. The description-based systems, without this
capability, are obedient to follow an algorithmic behavior and can by no means
change their description in order to adapt it to changes in the surroundings.

It is also shown that learning and induction are intimately connected and systems
without inductive ability have no genuine learning ability. They can generate
conclusions only from already established premises and these premises are
programmed, not acquired by experience. This has the implication that model-based
anticipatory systems cannot be implemented on computers and furthermore, that
genuine machine learning is in fact impossible.

2 Learning and Knowledge

The terms learning and knowledge are intimately connected but, as used in
everyday language, neither is a very concise concept. With learning we always
associate a moment of new knowledge and it is exactly what should be meant by new
knowledge that is crucial when we try to formalize leaming. The normal way to think
about the two concepts is that when you leam something you increase your
knowledge: what one leams one did not know before. It is in this sense we may
consider a leaming device as a device. which increases its knowledge, i.e., after the
learning, the device, in a sense, knows more than before.

The most genuine case of leaming is when we have explored from the environment
something we did not know before. Here the subject matter of learning is the
empirical world, which interact with the leaming device. An example of such learning
is the generalization of observations leading from an existential statement to a
universal statement as "all P are O". To such a conclusion we arrive at bv induction,

277

i.e., an inference that generalizes a few observations about members in a set to all
members in the set. By way of an example, suppose we notice that all observed ravens
are black. If it seems reasonable to infer that "all ravens are black" then it is an
inference arrived at by induction. To go from the proposition"some P are Ç'tothe
conclusion "all P are Q" is a description of order in our environment. What is
observed and described is primarily the undedying regularity, which is extracted to
such an extent that predictions can be made. Science is essentially such a leaming
device (Hesse, 1973) where regularities and order in nature are formulated in
descriptions in the form of universal statements.

To be able to describe a phenomenon we must have a suitable collection of
predicates formulated in an already existing language. The phenomenon in question
must already be known and perceived as existent but the order, created by the
hypothesis, is not known in advance. By way of an example, there was a time when
witches populated Europe. Witches were believed and there were a mental readiness
for perceiving them. As time passed and we leamt more about the world it was
realized that there are no such entities as witches. That is to say that knowledge of the
world is much a consequence of our existential perceptions. We do not know the
world; we have to create it in terms of existential objects. Compare Bridgeman's
(1936) operational view on existence:

l..l how do I htou, that the tables, the clouds, and the stmts of ordinary
experience exist? These qre not given directly in experience, but are
constructions. It seems to me that the answer to all these questions is that
the thing exists because for one thing the concepts work in the way I want
then. In nty effurt to solve . the problem of adapting myself to my
environment I invent certain devices, and some ofthem are successful and
I use them in my thinking.

The idea of associating learning with extraction of regularities and order is not new
and can be traced back to the Gestalt school in Germany. According to this also
insight is a kind of learning.

In science, descriptions anived at by induction are called hypotheses. A hypothesis
with predictive power is called a theory when it is sufficiently confirmed. There is a
widespread misuse calling a hlpothesis a theory despite the lack of predictive power.
As an example, the theory o/ evolution is a well-confirmed hypothesis but, despite
being called so, it is not a theory since it cannot predict how changes will occur, just
that it may occur.

Since knowledge of the world depends on how one perceives the world, learning
also involves change of knowledge. The change of knowledge is necessary when new
phenomena are impossible to describe in the current language or when an old belief
no longer agrees with current conception. An example of the former is quantum
phenomena, which were not possible to describe in the language of classical
mechanics since quantum phenomena were not consequences of the classical theory.
The disbelief of witches is an example of where old ideas do not fit in a new
conception of the world.

278

We also talk about learning in quite a different context, namely when we obtain a
new mathematical theorem or something else that we conclude by pure deductive
reasoning. This kind of learning is not of the same quality as induction since a
theorem is a consequence of axioms in a formal system. No new knowledge is
created. the axioms are the same as before and thereby the theory. If we consider
theories with a recursive set of axioms, the set of theorems is recursively enumerable
and there is a recursive function that can generate all theorems in the theory. This
derivation of theorems is completely mechanical and can be done by a computer
(Turing machine). The equivalence between recursive functions and computing
machines is a consequence of Church's thesis. Making a derivation does not involve
any understanding of the symbols used, contrary to induction lvhere conclusions are
about concepts, i.e., such entities to which symbols are interpreted.

For people. as a leaming device. the two ways to look at leaming do not involve
any problem since in the term learning there is no restriction to a special method. In
many cases learning means understanding and in this respect deductively generated

conclusions can be regarded as new know'ledge. For example. when someone learns
P),thagoras' theorent and understands it to such an extent that the whole idea behind
the theorem can be grasped. it is reasonable to talk about new knowledge. However,
when formal s1'stems come into consideration, the question arises whether a
consequence. deductively inferred. can be considered ner.l' knon'ledge.

3 The Learning Process

Induction. as a learning method. is an information creating process in the way that
the result cannot be infened from the background knowledge. Instead there is an
increase in knowledge that stems from the inductive process. A good example from
physics is Max Planck's discoverl' of the quantum of action. which inaugurated a new
epoch in the physical science. Pais (1991, p. 86) has the following description of
Planck's way to find his law.

Experiment had given him every reason to believe that he had the
correct spectral densitl,'p. From p he could read offthe average resonator
energy- U. Simple thermodynamics had led him from U to the resonator
entropy S. In turn S is related to probability I4b1t Boltzmann's principle.
Problem: To find and interpret the expression for the fundamental
probability W which, by arguing backward. yields the known p.' from 14/ to
.Sto Uto p.

As is evident, this process of reasoning is not deductive since contrary to such a
process we are searching for the premises from the conclusion. This procedure is
typical for induction. Wang, (1987, p.180) has explained this process in the following
way:

We tend to believe the premises [axioms] because we can see that their
consequences are true, instead of believing the consequences because we

279

know the premises to be true. But the inferring of premises from
consequences is the essence of induction [. . .]

The process of induction aims at a universal description, which can be described in

the following sense. Suppose P is a predicate (property) and a,'s are individuals and

that we from the observations P(a,).P(a.),...,P(a,,) conclude that all individuals

have the property Poi'e''
iltLtùLtitrtl

P(a,) ,P(a.) , . . . ,P(a, ,) = (x)P(r) r

This reasoning is going on in a metalanguage in which we can talk about the object
and in which we can understand them. From a logical point of view'we may express it
as that the reasoning is going on in the model.

From the inductive expression it may seem as the numbers of examples are of
importance. On the contrary, the characteristic of induction is that there is no effective
way of deciding the sufficient number n of observations for making the hypothesis
(Lôfgren, 1982). In fact it is not the knowledge of the number n that is a determining
factor. Instead it is the language in which the induction process occurs that is of vital
importance. Remark that induction is relativized to languages.

In order to make inductive inferences we must be able to extract regularities from
observed sequences of individual cases. to such an extent that it is possible to make a
definite description of the phenomena in question. This may be expressed as that
induction is the process of making order out of disorder. The shorter the description
the more information we get from it in the sense that we have succeeded in extracting
more regularity from the surroundings.

Induction is an information-producing rule that has no correspondence in formal
systems. If we think of inference rules in logic as production rules the çase is in fact
the opposite:

v',rs(r) ""'3"t' s(o).

That is, all inference rules in logic are in/ôrmation reducing. Vy'e may also think of it
in the following way. Suppose we have a set ?n of axioms and that p can be deduced
from Z. ç is a theorem in the theory Tbut ç is the result ofjust one of all possible
derivations from 7* (ln this paper I do not make a distinction between the set of
axioms and the theory generated from the axioms.) If all derivations are regarded as
branches in a tree, ç is a node in one of those branches. It may be that further
derivations can be done from (p , as an inner node in a branch. but the branches above
p is completely impossible to derive from g. Thus. p gives less information than 7".

Note that in the deduction above (from all x have S to a has S; there is no need to
understand the meaning of the symbol S in order to make the deduction. S is just a

I 1.x.1 means "for all" in the metalanguage

280

symbol in a formal language in which the meaning is not part of the deduction.
Whatever symbol we choose, the derivation is the same. Of course most symbols in
formal languages will be given a meaning but this is not considered part of the
language. (Cf. Shoenfield, 1967, p. 4.)

Since induction increases a device's knowledge of the world by creating order,
Lôfgren (1973) has suggested the following learning hypothesis:

An object I can leqrn from a surrounding S to the extent that it can extract
order (regularities) from S so as to produce a description of S relative to I
(l shall be able to make inferences from the description) [...]

This is a general learning hypothesis. Since my intention mainly is to explain
model-based anticipatory systems from a computational standpoint I will modify this
thesis to one suitable for automata.

All knowledge is about reality or what we perceive existentially in the world
around us, man made or not, and since knowledge is a result of learning we may
conclude that learning begins with the interaction with the environment. We learn
from the surroundings by observations. In doing so. an important component is an
already established model of the world. With model I here mean the conception of the
world just in the way model is used in logic. In the model erisr concepts and
properties even if they not always are describable. Thus, when we leam something we
always do it in some background knowledge. This knowledge is either commonsense
knowledge or scientific knowledge. When we leam something it is a universal or
existential statement that cannot be explained from the background theory.

Let I be a theory, 11 a hypothesis and O an observation. Then 11 increases the
knowledge if

f l+ H (l1cannot be inferred from the theory Z).

T l+o ,and
T, H l- O (O can be explained in the extended theory where ll is added to Z;.

It is tacitly understood Lhat T, H and O are consistent.
Thus,11is a description ofwhat is learnt from the surroundings and the shorter the

description the more is leamt. That is to say that the shorter the description, the more
regularity is perceived in the empirical world and the better is the predictive power of
the description.

Now we have a way to measure increase in knowledge and with that also a way to
define what should be meant by a learning device. A device which increases its
knowledge in the way just described will be called a genuine learning device. This
leads to the following machine learning hypothesis, which is a modification of
Lôfgren's hypothesis above.

28r

Machine Learning Hypathesis. Let A be a device with the background
knowledge Z. Furthermore, let O be an observation (or observation series)
that A is able to observe but cannot explain from Z. lf A c-an produce a
description H ftom O (relative to itself) such that f vlHl explains O,
then I has learnt ,F1 from its surroundings.

With this definition only hypotheses creating devices have a genuine learning
capability. It also rules out deductively generated conclusions as leaming since
everything concluded by deductive devices is already implicit in the premises
(axioms). If we again think of a theory as a tree with the axioms in the root nod and
all possible derivations branching out from this nod, we cannot claim that it is new
knowledge to obtain a nod (theorem) in the derivation tree. In a computational way all
trees are the same and what a tree represents is not part of the tree. This is of course
an exact equivalence of a derivation in a formal system where a derivation is
completely independent of the meaning of the symbols included. As a consequence
induction cannot be described in the language of logic since formal systems are
deductive systems.

In biology we also talk about learning by inheritance, i.e., knowledge genetically
transferred from one generation to another. For automata it corresponds to being
programmed by the surroundings and consequently is not genuine leaming in accord
with the machine learning hypothesis. Genuine learning can also be explained as the
aim of finding new predicates (concepts) that explain an order of the empirical world.

Since the leaming process is a description process it means that there is no absolute
leaming. We are obliged to stay within a language. It implies that in order to extend
our knowledge of the empirical world it is necessary to extend the language with more
concepts, which as we have seen cannot be deductively generated. In evolution but
also in science this is an adaptation that is continuously ongoing. If certain
observations do not fit the existing model it might be so because the model is not a
model of the observed data, i.e., we have to change the model or create a completely
new model corresponding both to the observed data and to already existing objects.
Here again we may refer to Planck's effort to develop his quantum law.

Of course, it may also be the case that the disorder of the observed data is too
complex not only to be described in the current background knowledge but also for
being describable in any background knowledge. Even in the case we arrive at an
object, this can itself be too complex to be described in any theory. As an example of
the later we may follow Kleene (1952) who starts with the Turing machine predicate
T(x.y,z) meaning that the Turing machine with the code numberx will give z as a
result when feeding with y on the tape. y and z ue coded numbers of the input and
output data respectively. We may compare the Turing machine with a computer,
where x stands for the program, y lor input data and z for output data. Then, the
predicate -lzT(x,x,z) is not describable in any theory. The predicate can be read as
"there is no computer that when fed with its own program as input data will produce z
as output. This is in fact a generalized form of Gôdel's incompleteness theorem,
which is explained by Kleene (1952^p.302, rheorem XIII.) as:

282

There is no correct and completeformal systemfor the predicate

-1zT(x .x ,z) .

4 lnductive lnference Machines

Much effort has been spent in mathematics devoted to inductive inference. The
reason for calling it inductive inference is due to there being some similarities with
the induction discussed above as an information creating method but. as will be
shown, this resemblance is very weak. In order to distinguish bet'*een the two types
of induction I will in this section call the induction discussed above pure in contrast to
the mathematical inclined induction. which I will call recursive of reason that will be
obvious.

As for pure inductive inference. the recursive induction starts with some examples
(observations). It is a supposition that the underlying set from which these examples
are taken is recursive. That is. there is a recursive rule, which generates all values. It is
further presupposed that the inference method is computable, which is the same as
saying that the method is completely deductive. To sum up. we start with several
examples of an unknown recursive function and w-e are going to find which function
by deductive means (Odifreddi, 1999). Let us by an example see how such inferences
will work. Suppose we are studying a kind of birds that are either black or white

colored but this is unknown from the beginning. Instead the starting point is that we
believe that they can have everl'color so we give all possible colors a number: 0 for
white. 1 for black. 2 for red and so on. Nou. suppose that u'e get the following
measures:

0.0. 0 . 0 .

that is. the first four observed birds are all white. A computer would immediately
suggest the underlying recursive function being ./ (n) = 0 . When generating its guess,

the computer does not use any background knou'ledge of biology or any knowledge
of the surroundings in w'hich we are making our observations. It always has the same
background. namely the language of arithmetic. or to be more precise. an axiom
system in which it is possible to do arithmetic (See next section for reference to such a
system.)

Suppose now that the next observations are

1 . 0 . 1 . 1 , 1 . 0 . 1 .

It might be that a machine can guess the next value. that is, tell us which recursive
function that is likely but it cannot tell us from a conceptual view what seems
reasonable, namely that the one half of the population is white and the other black. In
order to be able to make such a conclusion the machine must first be able to talk about
colors, that is, have the concept of color. It does not help to have a measuring
instrument for automatic coding of light frequencies to numbers. Color is not a

283

physical properfy but a concept created by the human brain. Nonetheless, color, as an
existentially perceived concept, is a reality. Even if a computing machine tells us
which recursive function that can generate the initial examples it cannot tell us
anything about the concept in question since the computer has no knowledge of color.
The numbers used here for colors could be used to codify many other properties.
Which interpretation to chose is not part of the numbers. Whatever the code stands
for, the computer will guess the same recursive function.

As is also clear from the example above, it is not the observed numbers of initial
examples that are crucial for our inductive inference it is our background knowledge
that is of importance. Sometimes we generalize from one single example since our
background knowledge tells us that we have observed a typical example.

One other supposition in the theory of recursive inductive inference is that the
inference is viewed as an infinite process (Odifreddi, 1999). Suppose thar M is an
inductive inference machine that is capable of describing some unknown recursive
function F.lf M is fed with more and more examples of the function values, M will
generate infinitely many guesses. say .1,,/r..,.. If there exists a number N such that

/,. is a correct description of F and all funher guesses are the same, that is,

f ^. = -f ̂ *, = .f .t.*t =... then we say that M identifies F in the limit. There is no method
for a machine to decide when it has reached the point when the guesses continue to be
correct. This is called identific{ttion in the limit (Gold, 1967) and views inductive
inference as an infrnite process.

Confirming a hypothesis means deciding whether the given series of examples is
sufficient to regard the hypothesis as verified. that is, our beliefin the hypothesis is so
strong that u'e take it for true. In pure induction there is always a confirming principle
in order to decide when oûr description of the phenomena is sufficient simple to serve
as a general description. Furthermore. such a confirmation must with necessity be
performed in finite time otherw'ise lve would not arrive at a conclusion. Identification
in the limit. as an infinite method. means consequently that the confirmation problem
is entirely left out.

Should a finite principle be used in recursive induction it would with necessity be
computable otherw-ise it u'ould not be possible to follow by a computer. It is no
accidental circumstance that there is no confirmation principle in machine induction.
Lôfgren (1982) has shown that no general confirmation principle is recursive.

5 Learning Computers

I will look at computers in their most general form, that of ruring machines. This
generality is due to Church-Turing's thesis that can be tbrmulated as that

every efectively calc'ulable funcrion is contputable on a Turing nuchine.
or equivalently,
the Turing machine (as u'ell os any oJ a number of other modelsl is a
universal ntodel of conpuration.

284

Thus, a Turing machine program is an algorithm for computing a recursive

function (Note, every algorithm halts). Such a computation can be carried out for

example in the (axiom) system R of Raphael Robinson (Smorynski, 1991, p. 338) in

which every algorithm can be described. R is weaker than for example Peano

arithmetic but despite that every recursive function can be represented in it. A basic

result in metamathematics is the following connection between computability and

formal systems

/ recursive e / is representable in R.2

Here, f is representable in R means that there is a formula p such that

f (x , ,x , , . . . , x , ,) = !

f (x ,x . , . . . , x , ,) * y

So, every program is in fact a precise description of how to compute a specifrc

function or, in other words, how to deduce a theorem in R. However, not all programs

are about arithmetic. For example, in logic programming the idea is to define a

program as a logical formula and consider a refutation proof a computation. Thus. the

computation is a proof in the theory specified by the program. Likewise, database

queries are proofs in a theory formulated in the program. A sentence is true in the

database (model) if it is deducible from the theory describing the database. In the case

of logic programs and databases it is the recursive inference rules that are computable

and we may regard the program as a theorem prover in the theory represented by the

program.
Regardless of the form of the program, it is about something, i.e., the program is a

description of a model. In this sense we may consider every program a theory and

every execution a proof in the theory. As in every theory, the meaning of the symbols

in the program is not part of the program but is added by an outside observer; a

program must be specified with its interpretation. This view is well developed by

Manna (1974), who defines a program as a pair f'=(S.1) w'here S is a flowchart

schema (flowchart program) and 1 an interpretation in model theoretical sense. A

flowchart schema can be regarded as a program written in an ordinary programming

language. Already in 1947, Goldstine and von Neumann developed the idea of a

flowchart program and later it was shown that every recursive function is flowchart
computable (Odifreddi, 1992). Manna shows as well that every schema can be

formulated as a formula in a first-order language and then, again, every computation

is a theorem in the specified theory.
The merit of looking at a program as both a description and an interpretation is the

emphasize on the non-fragmentability of a language. This has been formulated by

Lôfgren (1994) as a thesis of complementarity:

2 In fact in a consistent formal system extending R.

285

Language as a complementaristic phenomenon. In general,
complementarity refers to wholistic situations where fragmentation into
parts does zol succeed. In its complementaristic understanding, the
phenomenon of language is a whole of description and interpretation
processes, yet a whole which has no such parts expressible within itself.
This constitutes a paradigm for complementarity, the linguistic
complementarity.

This thesis is strongly supported by Tarski, who in his seminal 1936 work showed
that no language is allowed to contain its own truth predicate. The predicate "is true"
is relativized to whichever language we are speaking of. If we say that a sentence in a
language Z is true, that is an assertion that belongs to the meta-language, not to the
language Z.

Manna's view of a program as a linguistic wholeness is not normally what
computer scientists and programmers mean by a program. Mostly, if not always, they
do not make any clear distinction between a program, as a description, and its
corresponding interpretation. Sometimes the code is referred to and sometimes the
interpretation of the code. Like mathematicians. programmers mostly reason in the
model and not in the formal system. That is why many programmers confuse a
program (code) and its interpretation and ascribe properties to programs for which
there do not exist formal descriptions. This amalgamation may seem reasonable from
a programmer's perspective and is normally not harmful. However, when dealing
with basic questions of what computer really can do the distinction is significant.
Manna, as well as Lôfgren, calls attention to the holistic view of languages: formal as
well as natural.

With this insight we can say that an execution of a program is a deduction of a
theorem in the theory, which the program constitutes. Expressed differently; a formal
system is nothing but a mechanical procedure for producing theorems and Turing
machines yield an exact equivalent concept of formal systems. In the light of the
reasoning above conceming increasing and decreasing information processes, this can
be expressed as that a computer program is an information reducing process contrary
to induction, which, as we have seen, is an information creating process.

That a computation is information reducing can be more easily seen from the view
of 2 -calculus. If we simplifu to one argument, a function.f is L-definable if for some
),-term F

p, = Jçn1 , where D means the numeral of n.

2 -calculus is a theory about computations in the sense of the following relation

./ is recursive <+ / is 2 - definable

Lambda terms denote processes, which means that functions are regarded as rules
in order to stress their computational quality. One of the two basic operations is

286

application, which can be seen as the process ofgoing from input to a rule to output of
the same rule, i.e., a computational reduction. By way of an example (Barendregt,

1985. p. 50). take the expression (lx.xr + l)3 -+ 10 , where the arrow reads reduces to.

We can interpret the expression as "10 is the result of computing (Àx..rt +l)3".

Reduction is not symmetric because there is no way going from l0 to the applicative
expression started with. It is in this sense that a computation is information reducing;

(Lr.x2 +l)3 gives more information than just the nurnber 10. Since all 2-definable

functions are Turing machine computable. every such computation is information
reducing.

Thus" there is no way for a Turing machine to create information, i.e.. increase its
knowledge. This conclusion could also have been arrived at from a model theoretic
reasoning by observing that to be able to create new predicates it is necessary to be
able to reason about its own model of the surroundings and in addition be able to
change tn'is model. Theory change has the point of departure in the model. The
understanding of a theory change must come from outside the theory. It cannot be
made from vvithin the theory.

The equivalence between computers (Turing machines) and formal systems has
far-reaching implications fbr machine learning. To exemplifl'this I will use learning a
maze since this is usually regarded as genuine learning. From a computational point
of view. leaming a maze can be transformed to searching in a tree. Every junction in
the maze can be regarded as a nod in a tree and the search can be performed by
labeling all visited nodes. Many other examples, where learning is supposed to be
involved. are comparable with tree searching. or more general, searching in a graph.
As we have seen, all such searches are completely' deductive and just a derivation
from the premises.

6 Interactive Machines

So far we have exclusively considered conventional Turing machines, which do
not interact with their environment. Since modern computers make extensive use of
Internet and the interplay r.l'ith other computers it might be that the old Turing
machine model no longer is relevant as a model of computation. That this is the case
is argued at great length by Wegner (1998).

Already Turing (1939) suggested a machine with an oracle. i.e.. a machine that is
able to halt its computation and request additional information. We may think about
such a machine as one that can answer questions about regularities that cannot be
answered by any ordinary Turing machine. Following Davis (1958), a Turing
machine is a set of quadruples of the following form:

8,5 iS*Qr

4,S,RQ,

4,5 iLQ,

l .

2.

3 .

287

vçhere q1,e1 are states (not necessarily different),S,,So are symbols on the tape and

R, Z means move right, left respectively.
In his account, Davis restricts the interrogations permitted by the machine to those

ofthe form

i s n e A ?

where r is an integer and I is a set of integers, fixed for a given context. As Davis
points out, "this limitation is not nearly so restricted as might be supposed". Now, a
new instruction

4 . q ,S ,QrQr

is introduced with the intention that if the Turing machine contains such a quadruple it
should ask whether a certain number on the tape is or is not in the set l.

This provides a Turing machine by a means of communication with the exrernal
world. When a machine is in a certain state with a certain description on the tape, the
machine may be interpreted as inquiring: If n is a certain number on the tape, is
n e A? The new state of the machine is chosen in accord with whether the answer to
the question is yes or no.

By an l-computation of a Turing machine Z. we refer to a Turing machine that
makes use of questions to the set I to finish its computation. Now we can define a
function. .f (x) , to be (panially) l-computable if there is a Turing machine Z, which.
with the aidof A" can compute ./'(x). The oracle is an extra recursive entity, helping
the computation of any function recursive in I with its troublesome spots. A call to I
can be effectively answered only if I is recursive but in principle. if the oracle is
clever enough, any question concerning A canbe answered regardless ofhow the set
I is defined.

The definition above can easily be generalized to a set Y of completely defined
functions instead of a set I of integers. The idea is norv modified by assuming that
any value of one of the functions in Y , if demanded, will thereupon be supplied. A
function, which is computable with the aid of Y is now said to be Y -computable. To
simplifu matters, I will assume that V consists ofjust one function, g.

Let R be the class of recursive functions and Rs the class of functions tr;-
computable or recursive in g.lf g is recursive the two classes are the same while if g
is not recursive but notwithstanding computable by an oracle, then R c R8. Now,
can a Turing machine replace the function g as an oracle? Yes of course it can, but
then the oracle is (partial) recursive so nothing is gained. Hence, there is no point in
letting a Turing machine take the place of an oracle since this will not extend
computability (Ekdahl, 1999). The computing power is only extended when there is
an oracle that can compute noncompulctble functions.

288

To increase the learning capability we would have an oracle that can answer
questions about the induction function. A human being is such an "oracle" but as we
have seen, no Turing machine can take the role of a noncomputable oracle.

7 Anticipatory Behavior

A system that is anticipatory has the ability to foresee the consequences ofcertain
events and act in a way adapted to the purpose of the system. Such behavior can in
many cases be performed by means of an embedded algorithmic description that tells
the system how to proceed in different situations in order to avoid unwanted
consequences. No maffer how well suited the description is, such systems are closed
in the sense that they do not know any'thing about their surroundings. This does not
mean that such a system does not interact with its environment. It just means that the
interaction is mechanical and does not involve any understanding of the interaction. It
is just the same as when the brake system in a car interacts with the driver: the brake
system has neiTher knowledge of the driver nor of the function of the brake system.

Thus, if the surroundings are changed, the system will not know it because the
model, that the description concerns. is not part of the description. sincelf the
surroundings undergo extensive changes, the survival of the insect may depend on
new behavior but this cannot be generated from the insect's genotype. The changes
must in most cases be caused by mutations. which, from a computer perspective, ma),
be regarded as programmed changes. (ln some cases a genotype may lead to different
behavior.)

A more developed anticipatory behavior is displayed by systems that in the
semantic sense also have the ability to create and reason about a model of the
surroundings. Such systems are open in the meaning that they perceive their
surroundings and may change the model in accord to changes in these surroundings.
Systems that possess a model are called model-based contrary to the description-
based that only posses a description oftheir surroundings (Ekdahl, 1997)

Anticipatory behavior involves pre-evaluation in order to avoid unwanted
consequences. If the system is description-based, this is a completely syntactic
process going on in the language except for the derivation rules, which strictly
speaking is a rule outside the language operating on sentences in the language
(Shoenfield, 1967, p.4). I will disregard this distinction and consider the pre-
evaluation process going on in the syntactic part of a language. If the outcome of the
pre-evaluation does not fit in the surroundings this w-ill not be known to the system. In
the case of insects, non-fitting behavior might cause the extinction of the whole
species.

For model-based systems the pre-evaluation is performed on a model and in this
respect we may speak about model-based behavior. In order to perform the pre-
evaluation, such a system makes a description possible to follow if the outcome of the
evaluation points to a preferable action. This description process is as we have seen,
mostly inductive and accordingly not describable. When a model-based anticipatory

289

system changes its model it does it on account of an observed change in its
surroundings that shows that "Things Ain't What They Used To 8e"3. The system has
observed some order in the surroundings that either ovemrles a previously believed
order or implies a new order not known before, that is, the system has learnt
something new from the surroundings. This new order is reached by inductive
inference. Since model-based anticipatory systems are the only systems that have
inductive capability this gives us yet another way to characterize learning systems,
namely as model-based anticipatory. The implication is that computers cannot be
Iearning machines.

8 Conclusion

We cannot go outside the theory in which we are doing our conclusions. All
inference rules in logic are chosen to guarantee that we do not say more than we have
the right to do. "[...] if one has ten pounds of axioms and a twenty-pound theorem,
then that theorem cannot be derived from those axioms" (Chaitin, 1987). It is in that
sense that deduction is a process that goes tlom a higher level of information to a
lower.

The whole point with a theory is to be able to deductively predict the consequences
of our beliefs, not to create new beliefs. Deductively inferred conclusions make
explicit what was implicit in the premises. We cannot go outside a theory and create
another theory. For example, it is not possible to create the Euclidean geometry from
uithin Peano arithmetic.

The process ofcreating new beliefs about the world is a guessing process that has
to be supported by observations not fitting in old theories. We arrive at such guesses
by inductive inferences, which is the method to generate new ideas. It is necessary to
existentially perceive the surroundings. or in other wordso to have an existential model
of the surroundings in order to have the power of induction. To inductively describe a
phenomenon is the same as saying that we have a new existential model of the
phenomenon in question. The relation betw'een our beliefs and our model of the
surroundings can be described as the following equivalence:

Newbelief ê Newmodel.

Thus. if we believe something we did not believe before, then it implies that we have
to change model and if we change model it means that there is something that we now
believe but did not do before. Since new beliefs are the result ofan inductive process,
the equivalence implies that the only systems that are capable of maintaining their
own model are those with inductive capability. In the classification above of systems
it amounts to say that only model-based anticipatory systems are inductive.

Induction is an information creating process with which we continually increase
our knowledge of the world. Deduction. on the other hand, is knowledge decreasing in

r A tune by Duke Ellington and Billy Strayhorn.

290

the sense that the result of a deduction contains less information than the premises
started from. Thus, inductive capability is a necessary condition for being a leaming
device. Computers as formal systems are only deductive devices and can
consequently not be learning devices. It means that computers cannot create new
theories or change their own theory in order to better fit a changed conception of the
world. Here u'e may not confuse the change of model with pure control systems,
which can mostly be regarded as error-actuated theories.

References

Barendregt Hendrik Pieter (1985). The Lambda Calculus: Its Syntax and Semantics.
North-Holland" second print.

Bridgeman P. (1936). The Nature of Phy'sical Theory'. Dover Publication.
Chaitin Gregorl'J. (1987). Information, Randomness and Incompleteness, Second

edition. completely revised. enlarged. reset. World Scientific Series in Computer
Science. Vol. 8.

D'espangat Bernard (1999). Conceptual Foundations of Quantum Mechanics, Second
Edition. Perseus Books. Reading. Massachusetts.

Davis Martin (1958). Computabiliq'and unsolvability. Dover Publications, Inc.
Ekdahl Bertil (1997). Classification of Anticipatory Systems. In Nagib Callaos, Chan

Meng Khoong. Eli Cohen (eds.). Proc. l" World Multiconference on Systemics.
Cybernetics and Informatics. Caracas. Venezuela- Jul.v 7-11, 1997, Vol. 2, pp.
499-505. Organized by IIIS International Institute of Informatics and Systemics.

Ekdahl Bertil (1999). Interactive computing does not supersede Church's thesis. In
Roger Y. Lee (ed.). The Association of Management and the International
Association of Managemeut. l7trr Annual International Conference, San Diego,
California USA. August 6-8. 1999. Proceedings Computer Science, Vol.17,
Number 2.Part B. pp. 261-265. Maxmilian Press Publisher.

Gold E.M. (1967). Language identification in the limit. Inf. Control 10.447-474,
1967.

Goldstine H.H. and von Neumann, J. (1 947). Planning and coding of problems for an
electronic computing instrument. part II. Reporr for U.S. Army Ord. Dept., 1947.

Hesse M. (1973). Models of theory-change. In Patrick Suppes. Leon Henkin,
Athanase Joja, Gr. C. Moisil (eds.), Proceedings of the fourth international
congress for logic. methodology and philosophy of science, Bucharest, l97l:
Studies in logic and the foundation of mathematics. vol. 74. pp. 379-391, 1973.
North-Holland Publishing Company.

Kleene Stephen C. (1952). Introduction to Metamathematics. North-Holland.
Lôfgren Lars (1973). On the formalizability of learning and evolution. In Patrick

Suppes, Leon Henkin, Athanase Joja. Gr. C. Moisil (eds.), Proceedings of the
fourth intemational congress for logic, methodology and philosophy of science,
Bucharest, 1971: Studies in logic and the foundation of mathematics, vol.74,pp.
647 -658, I 973. North-Holland Publishing Company.

Lôfgren Lars (1982). Methodologies and the Induction Problem. in Trappl R., Klir G.

29r

and Pichler F. (eds.), Progress in Cybernetics and Systems Research, vol. VlI,
Washington, New York, London: Hemisphere, pp. 15-22, 1982.

Lôfgren Lars (1994). General complementarity and the double-prism experiment. In
Laurikainen K.V., Montonen C. and Sunnarborg K. (eds.), Symposium on the
foundations of modem physics 1994,70 Years of Matter waves, Helsinki, Finland,
13-16 June 1994,pp.155 - 166. Paris, 1994, Éditions Frontiérs.

Manna Zohar (1974). Mathematical Theory of Compurarion. McGraw-Hill
Publishing Company.

odifreddi Piergiorgio (1992). Classical recursion theory: The Theory of Functions
and Sets of Natural Numbers. Nonh-Holland. (sec. impr.).

Odifreddi Piergiorgio (1999). Classical recursion theory, Volume II, Elsevier.
Pais Abraham (1991). Niel Bohr's Times. ln Physics. Philosophy, and Politics.

Clarendon Press.
Papadimitriou Christos H. (1994). Computarional Complexity. Addison-Wesley

Publishing Company" Inc.
Shoenfield Joseph R. (1967). Mathematical Logic. Addison-Wesley.
Smorynski Craig (1991). Logical Number Theory I. Springer-Verlag.
Tarski Alfred (1936). Der wahrheitsbegrifïin den formalisierren Sprache. Studia

Philos., l. 261-405. 1936. (English rranslation 1956 in Logic, Semantics.
Metamathematics, oxford. (Second Edition. second printing 1990. J corcoran
(ed.), Hacklen)

Turing Allan (1939). S1'stems of logic based on ordinals. Proceedings of the London
Mathematical Society, vol. 45. pp. 16l-228.1939.

Wang Hao (1987). Reflections on Kurt Gôdel. A Bradford Book. The MIT press.
wegner Peter (1998). Interactive foundations of computing. Theoretical Computer

Sc ience 192. pp .3 l5 -351. 1998.

292

