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Abstract
Hilbert's conjecture that the whole of mathematics could be provided by a flnite set of
axioms (Hilbert, publ. 1980) was challenged in branches of mathematics, devoted to
arithmetics and algorithmic computation, by Gôdel (1931), Church (1936), Turing (1937),
and Chaitin (1998). This questioned what can be expected from scientific knowledge, in
particular tt[ough the mesh of mathematical certainty, in the assessment of what could be
ôonsidered true about our universe, that is also on ourselves via self-evaluation possibility.

This study will thus revisit some current problems about the conditions required for
allowing a measure of "something" likeky unknown, situated "somewhere", in terms of
distances and dimensions. The debate will then focus on the scope of mathematical
knowledge, with special regards to indecidability, incompleteness, and the fate of such
mathematical realites claimed to escalæ the field of mathematics, like for Chaitin's 'omega

number'. The formal involvement of anticipatory processes in finding solutons through
biological self-evaluaton will be analyzed in several steps.
Keywords: Availabil ity-axiom; Functionality-Axiom; Compatible-intersection;
Exploration-function ; Power-set of parts.

I Introduction

A reasoning system is frequently identified with a logics. that is a collection of rules
conventionally adopted for the assessment of the structure of a proposition, its method of
deduction, and the proof of its validity (Carnap, 1958 ; Adamowicz and Zbietskt, L997,
Malatesta, 2000, Tymoczko and Henle, 2000). The simple system of 'three valued' logics
uses three possible issues : true, false and undecided. The output 'true' is eventually
contained in a [0,1] interval in fuzzy logic (Zadeh and Kacprzyk, 1992), while 'false' nor
'undecided' differ from 'nonexisting' as analyzed by Bounias and Bonaly (1997a). A
reasoning system is not a single nor a definitvely fixed system (Kac and Ulam, 1992).
However, an excess of symbols and abstract use of these symbols, as in Whitehead and
Russell (1925), has been criticized (Jeffrey, 1967) and considered to be "bogging down"
and "unilluminating" (Weisstein, 1999a). While Hadamârd admitted that one who his 'well-

reasoning'essentially feels the problem like him (cited ir Gonseth, 1926), Lebesgue thought
that some psychological factors lurk in the acceptance of a reasoling, while logic could
only provide reasons for rejecting a reæoning (cited in Dugas, 1940). Thus, logic must use
symbols with unambiguous meaning, and devoid of contradiction precluding the
decidability of derived propositions, like for the usual theorems of predicate calculation. A
demonstration can be direct, or ad absusdum, or recurrent, up to transfinite induction.
However, the latter are rejected as 'not constructive' by some mathematical schools, like
Brouwer's intuitionism (Largeault, 1992). Even the Bourbaki group has been charged with
lacking of interest for the logic branch that it considered rather exterior to mathematics
(Mashaal, 2000). Finally, truth might well be situated beyond these extremal positions.
In this study, the classical symbols of set theory will be adopted (regardless of some
redundancies) : (nv,V,ll,-,n,\-.,,f 2,Q c c,€ e,(+ =+). The additional sign (l X) will be
used for : "given some X", or "in presence of X", in complement to V and 3. The concept of
'compatible-intersection' noted ( n) will be defined below (definition 2.1).
Axioms have been defined, from Euclid to Hilbert, as self-evident propositons, or primary
truths accepted without proof, or propositions adopted conventionaly, even without need for
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having any link with any reality. What an axiom should be has sometmes been nearly
ignored even in articles dealing with axiomatics (Frai'ssé, 1982).
An explicit definition contrasts with an implicit definition resulting from reciprocal relations
in a system. A concept, or "definiens", involves a justified formulation by use of a
"definiendum", composed of justifying concepts. Since a definition is also a kind of
proposition, predicate or axiom, it should be given together with its domain of validity.
A theorem is a proposition or property which can be demonstrated to be true within a given
system. The proof is usually considered as a sequence of signs and symbols connecting the
objects involved as well as the axioms accepted. The concept of proof thus involves an
ordered sequence of structures and rules applying to some sets.
A law or combination rule is usually noted (l-, T, o,...). It can be internal, i.e. working
within one given set (E), or external, i.e. extended to, or involving, outside sets in the
contitution of the domain. Such combination rules as (n,r..,r,= 2,C c c,e ê) provide a set
(X) with a structure, either directly or indirectly ; e.g. (c, C, or Ê e ) induce the
complementarity property (C). ttowever, (<a c ç,e e ) can also appear as a given structure
per se . A set (X) provided with a combination rule (I) is called a mathematical magma.
A structure S(x,J-) is usually provided on a set X by combination rule (-L), or given as a
primary property (Sx). Laws (c E,v) provide a set with parts of itself, owning the structure
of a Boolean lattice. Algebraic structures come from defined combinations of both laws and
structures. Laws (n,u) provide order relations and topological structures. Some relations
(4) can be considered as either structures or combination rules, and the distnction may be
also vanishing for mappings. However, it is worth mentioning that a structure is provided by
an operator (i.e. a combination rule), itself considered as a mathematical object, e.g. a
group (Dieudonné, 1982). A set provided with a structure is called a mathematical space.

2 An extended form of the assessment of truth

Proposition 1. Parts of a magma (resp. a space) becomes a "space of magmas" iff the rule
(resp. the structure) provided to the magma (resp. space) is explicitly intended to be
operating (resp. applying) otl these parts. This 'axiom of functionality' will be noted Ar.
Justification: spaces and magmas still are specifically and independently designated
(Bourbaki, 1990; Chambadal, l98l); thus, sets of mathematical objects can exist as not-
frrnctional collections. The expression 'space of magmas' will then be sometimes used to
denote functional associations of mathematical objects, e.g. S={X, (f, fu)}.

Proposition 2.1. A logic system is a variety of space of magmas.
Proof. (i) Logics uses symbols equivalent to combination rules. (ii) Logic applies on objects
that can be gathered in sets (X). If (X) is the collection of all elements that are compatible
with a togic (-6), the corresponding reæoning system is valid for any x e X and illicit for a
y: (y € Y lX n Y =Q). Moreover, collections of signs and symbols, rules, definitions and
theorems can be symbols, rules, definitions or theorems. An axiom can be composed of a
group of axioms, provided the laner are independent from one another. Therefore, a logical
system is a space. Since its combination rules applying to its own sets provide itself with a
structure, a reasoning system is composed of spaces of magmas. A proof is a ordered
sequence if any rule component is non-commutative.

Definition l. A'compatible-intersection' of spaces of magmas is a space of magmas noted
( ô) such that, given sets (X,Y), rules (J-,T) : (i) members or parts of a set X or Y may
obey members or parts of both of rules (J-) arul O) ; or (ii) members or parts of a rule (I)
or (T) may apply to members or parts of both sets (X) and (Y). Then a proposition or
predicate P belongs to a compatible intersection of (X,Y, J-,T) if :
P e {(I ô TXX ô Y)} <+ {3 xeX, yeY,l-(x)nJ-(y)$ or T(x)nT(y)*@ } and:
{3 J-ie J-. T;e T, J-i(x)nT;(x)*O or I1(y) rT{y)+Q } (l)
Symbol ô thus denotes 

-shared 
properties rather than just common membering.
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Proposition 2.2. A mathematical truth is included in the compatible-intersection of two
spaces of magmas. It constitutes a collectlizing relation (Bourbaki, 1990a, IL3).

Proof. Let a logic system be depicted by4={X,I,S(X,I)}, and a space of magmas denoted
by E = {Y,T,S(Y,T)}. Then, a proposition or property P must involve members of X n Y
provided with rules included in l- ô T and providing the resulting space with a structure
either belonging to 5(X,1) ô S(Y,T) or having a nonempty intersection with it.

P e L âE+ Pe {X, J-,  56,r ;}  ô {Y, T, Sfv,r l } (2 .1 )
However, it will be furtler argued thât a proposition P infering ftom such an operation may
be contained in neither ̂ 6 nor E. Hence :

z ( L , E ) , f  P : ( P ê L ) n v  ( P €  E ) (2.2)

Figure 1: Illustration of the position of a proposition at the compatible-intersection of two
spaces of magmas. A structure holding on a defined set implies back a combination rule to
be involved such that the corresponding space provides the magma formerly considered.

The system, illustrated by Figure 1, shows that a proposition, that is also a theorem or a
property, can appear in either the class of sets, structures or combination rules, or
associatons of them taken in appropriate combinations. A space like ,6 n E giving a
validity to a proposition P has been called a probationary space (Bounias, 1997). In the
classical sense, it would correspond with a 'truth-set' as "a set of all objects in the domain of
a proposition P for which the value of P is a true proposition" (James and James, 1992, p.
433). Thus, there is no absolute truth : a proposition gets the status of truth once it has been
shown to be compatible with the components of the space of a logical system (as a domain
space), applied to a space of magmas (as the range). The identification of the probatonary
space tulfilling this compatibility is called a demonstration. Finally, there is no axiom out of
identified members of the probationary space making true some proposition. Sequences of
intersections thus hold instead of sequences of sentences. Accordingly: (i) two logical
systems such that a theorem is true in one and indecidable in the other cannot be said
"equivalent", in contrast with a statement by Kolata (1982) about the Paris-Harrington
model; (ii) if sequences of sentences are indexed on time, then given axioms can be located
in the past and the theorems to be proved in the future, as hypothesized in a former attempt
to connect decidability with incursivity (Grappone, 1999); (iii) both axioms and theorems
could be placed in either one or the other position, due to relativity of the whole system of
spaces of magmas. Axioms may thus have to be identified rather than posed.

Corollary 1. An indecidable becomes decidable tlrough involvement of an appropriate
anticipatory process.
Preliminary proof. Let P a property true for a L ô E system as described in the first section
of this study. Then, an axiom or an axiomatic system (Ax) is anything else than P contained
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in {L n E}. Would an axiom A(P) in the classical sense, be needed for proving P, this
would mean that A(P) was not previously contained in P, tiat is :

A(P) E {1" = Cr- ap €)} (3)
Thus,  therecanexistanunknownpartB c AxsuchthatA(P) CBandPe B ô A(P): in
effect, it suffices that the proof of P is needed to allow the identification of B (e.g. p,q e P,
P(A)<+p(A), P(L ô E) <+ p(A)vq(B)). Then, P cannot be found through a mechanical
procedure. The solution comes from an anticipatory process by which the brain of the
operator foresees inside a probe system different from the system studied how to irlentify B
without proving P : this imposes thaf there exists L' and E such that (L' ô E) r (L .\ E),

and A(P) ô Cr-,np(L ô E) = P. (QED)
Consequently, P could be considered true as a predicate but incomplete as a

axiomatic system in (L n E). A general configuration is given by Figure 2.

indecidable of

Figure 2: A formal space of magmas {L n E} includes a proposition peP upon acceptance
of an axiom A(P). However, for P to be decidùle, one must know B which can be known

only if the system is studied within a higher space {L' ô E'} I {L ô E}. This may occur if
for instance mappings of q on p are surjective. An axiom or property may thus be at least

only partly valid in another axiomatc system larger than the initial one.

Corollary 2. Extending a formal system ftom a component X to Y such that Y: X, and X
does not imply Y by a recursive process, is a not computable, anticipation-dependent
system.
This should not be confrrsed with an extension of a comistent axiomatic system. In effect,
extending some members of a (L ô E) to (L' ô E) = (L n E) may lead to some properties
of (L' ô E ) which are not valid for (L ô E).
Examples are given by properties of a 4-manifold specifically not valid for n-manifolds
(n*4) (see Freedman and Yau, 1983 ; Donaldson, 1983). More simply, imagine we live in a
2-D universe (like in Abbott's "Flatland" or in Dewdney's "Planiverse"). lÏen tlrere is no
way for a continued arc (f) to escape the interior of a Jordan's curve (O) or a closed set (O)
without intersecting (O) or the frontier of (O). The solutions need that a universe is
conceived, other than the real one, in which the "flat programmers" would try to set up a
mechanical probing system. Since this probing universe would need n à 3-D, not readily
available for constructing an appropriate algorithmic device, then an anticipatory process
would be required. The latter is supported in biological brains by mental images, and
sometimes called "intuition", "imagination", or "creativity". After solving the immediate
problem, it can then eventually drive back to a principle allowing a machine to be
constructed to treat similar questions. This is analogous with the introduction of an
anticipatory parameter in a computer, with a former mental anticipative operation further
converted into a incursive computational form only if the incorporation of a higher
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dimensional embedding space is compatible with a computer's capability. This imposes that
(n>1) dimensions can be processed through a (1-D)-dimensioned system, which is made
available below by relation (8.4). Conversely, a property may vanish through extension of
the set of the space E of a (L ô E) system : e.g. the Hausdorff paradox states that for nà3,
there is no additive measure both finite and invariant of the group of translations in Rn.
All these situations involve qualitative-like jumps during a quantitative-like extension of a
simple parameter of a system, which may be hardly managed on computer and likely
provide a clue for indecidability problems.
The above argumentation supports and generalizes a "sentence-based" conjecture that the
Gôdel theorem could be invalid within incursive arithmetics (Grappone, 2000). A turther
argumentation will involve below the power set of parts of a formal system.

Proposition 3. An axiom is the ultimate undecidable of a formal axiomatic system.
Proof. Let (/) a logical system of reasoning combined with a probationary space (E), and
(A) an axiom in the classical sense (note that usually, logics is rather implicitly than
explicitly included among the components of a classical formal axiomatic system). When
(A) is added to {(z) ô (E)} = F, rhe exrended system {F}u(A) leads to decidable
propositions (P) and to some indecidable propositions (Q). Then, some like Chaitn (see

above) suggest that Q should be included in A. Thus {F}u(A) leads to (P)u((AuQ)=Q).

Inef fect :  Pc [ {F}u(A)]  andQc t {F}u(A)u(Q)]  ,  thus:Qc [ {F}u{A,Q}]  (QED)
Therefore, elevating a so-called 'not-demonstrable truth' into an additional axiom of an
axiomatic system (which then would get the status of a "metatheory", following Mirita.
2000) is a particular corollary of Proposition 3.

3 About self-evaluation and the concepts of 'measure'

A biological system gathers a set of perceptons from the outside world (ttuough Jordan's
points converted into fixed points standing for mental images with a perception) with a
perception from its inside (through sets of Brouwer's fixed points also translated into mental
images) (Bounias, 20ffia). Direct or device-mediated brain measurement on a unknown
space first implies the evaluation of distances and of dimensions.

3.1 Generalization of distances

Let E be a not totally ordered space, and A,B,C, ... subspaces in E. The symmetric
difference A(A,B) = Cevn(AnB) has been proved to be a true distance also holding for
more than two sets (Bounias and Bonaly, 1996; Bounias, 1997,2OO0a). However, if
AaB=Q,th isdis tanceremainsÂ=AuBregardlessof thesi tuat ionofAandBwith inan
embedding space E such that (A,B) c E. Thus the following extensions, with X denoting
the set of subparts of E having nonempty intersectons with both A and B:

^E(A,B) c Â(A,X) u A(B,X) (4 .1 )
This form contains two components: Â(A,B) called the intrinsic distance of A,B and
ÀB(A,B) =En {Â(A,X) nA(B,X) l  (4.2)
called the separating distance of A,B. Thus (Fig.3):
Àe(A,B) s Â(A,B) u Âs(A,B)

3.2 An exploration function as a general form of measure

Our approach aims at identifying distances that would be compatible with both the involved
topologies and the scanning of objects not yet known in the studied spaces. No such
configuration is believed to be an exception nor a general case.
A path g(x,y) such that ç(0) = x and <p(1) = y (Weisstein, 1999b), may provide a more
general approach than Borel, Hausdorff, Fréchet, and other distances as reporteg, by
ehoquet (1984), Tricot (1999b) and others (see Chambadal, 1981; James and James, 1992).

(4.3)
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Proposition 4.1. A set can be scanned in unique way by the composition of a identity
function with a difference function as below. Let E = {a,b,c,...} a set having N members.
(i) An identity tunction Id maps any members of E into itself : Vx e E , Id(x)=x . Thus,
given (a, or b, or c, ...) this provides one and only one response when applied to E.
(i i) A'strict 'difference functionis /suchthat:Vxe E,f(x) * x.
The complete exploration function is a self-map M of E : M : E r+ E, M = Id a f :

Zxe E, Ml(x) = f(Id(x)), Vn: Mn(x) = fn[d(x)) + x (s.1)
Proof. (i) Suppose M=Id(x) : then, each trying maps a member of E to a fixed point and
there is no possible scanning of E. (ii) Suppose one poses just not strictly f(^ld(x)) # x :
tien, given f(Id(x)) +x, say /t(Id(x) - y, since y*x. one may have again /z(Id(x) = x.
Therefbre, there can be a loop without further scanning of E, with probability (N-lft. (iii)
Suppose one poses M = .f, such that "fl(x) * x. Then, since fl(x) * x, there can be no start of
the scanning process. If in contrast one accepts as a property of the function f that I x,

.fo(*) = x, this again stops the exploration process, since then f e Icl.
The sequence of functions Mn(x) = /n(Id(x)) *x, Vn, is thus necessary and sufficient to
provide a measure of E which scans N-l parts and/or members of E. The sequence stops at
the Nttr iterate if in addition :

/n(Id(x)) * {/ i(Id(x))}(vi€r1,Nt) 6.2)
The described sequence thus represents an example of a path as described above in more
general terms. (QED)

Proposition 4.2. A general distance between spaces A,B within their common embedding
space E is provided by the intersection of a path-set 9(A,B) joining each member of A to
each member of B with the complementary of A and B in E, such that :
g(A,B) is a continued sequence of (iteratons of a) tuncton(s) / of a gauge (J) belonging to
the ultrafilter of topologies on {8, A, B, ... }.
The path g(A,B) is a set defined as follows on a sequence interval [0, fl(x)], xe E:

q(A,B)= u g(a,b) l^E(A,B)g9(A'B)
a€A béB

Remarks. (i) Let E" be the interior of E: min{ g(A,B) n Eo } is a geodesic of space E

connecting A to B, and max{g(A,B)nC6o(AvB)} is a tessellation of E out of A and B.
(ii) A gauge must belong to the ultrafilter of the embedding space. In effect,

filtering conditions encompass intersection properties (work in progress).
(iii) The measure of a open subspace C is achievable iff the dimension

Dim(g) of the path differs from Dim(C). Dim(g)>Dim(C) conesponds to a outer læbesgue
measure (here, a point or singleton {x} would be measurable even if it is in the
configuration of a open), and Dim(g)<Dim(C) to a inner (e.g. Jordan's) measure.
Dim(q)=p1m1C) meets Borel's conditons.

(iv) Particular case of a totally ordered space: let A and B be disjoint
segments inspaceE.LetEbeorderedbytheclassical re lat ions:AcB<+A<Band(A,B)
c E <+ E >A, E>8. Then, E is totally ordered if any segment owns a inflmum and a
supremum. Therefore, a distance (d) between A and B is represented by the following
relation :
d(A,B) E dist (inf A, inf B) n dist (sup A,sup B) (7)
with the distance (dist) evaluated through either classical forms or even the set-distance
^(A,B) which itself implies that {A,B } is a partly ordered space.

Corollary 3. The former Bonaly's conjecture (Bonaly, 1992) that a physical space should
be topologically closed can be tentatively extended to the following: 'An abstract space gets
the status of a physical space if any of its parts can be scanned by using a measure whose
intersection with this part, be it open or closed, is a closed structure'.

(6)
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This extended conception would encompass topologically open parts eventually
lurking in our spacetime and thus e_sggping 3-D probes: this would provide a status to the
still missing "dark matter" (Maiani, 2000).

A, B, X = closed spaces

no measure on c
dim(f) * dim(C)

C = oPêh Space A,B,C,X € {Ultrafilter of E}

Figure 3: Topological constraints on measuring a distance in- a complex -space, through- 
the function of perception (here the perceiver is A with f a neuronal chain).

3.3 Dimensional assessment

A generalization of the triangular inequality holds for a space X being a N-object:
N-l

M(Ak*) < \J {M(AkJ } €Dim(X)=d>k (8.1)
i=1

with N = number of vertices, i.e. eventually of members in X, k > (d-1) = N-2, and Ak*u*
the k-face with maximum size in X (still the former K-simplex itself), (Ak1) its
complementaries in the whole simplex.
Fulfïlment of the nonequality condition for the probe and the scanned space can be
achieved with a l-D simplicial gauge composed as follows for D>l spaces.
A n-simplex is composed with a set (Ena1) and a combination rule (J-) providing it with the
structure of dimension n. Hence : Sn = {(En*t), (an)}. This confers a simplex the status of
a space of magma. Space Sod = {(En*r), (J-d)} becomes a simplex iff d=n. Since it
repiesents the smaller space allowing a given dimension to be assessed, it will be called a
'simplicial canonical space' (Snn ) whose rute (J-n) is defined as follows.

Detinitlons 2. A n-(simplex-ball) is a connected topological unit ball circumscribed to a n-
simplex. For any one oflts points, there exists n other_points in it forming a n-simplex.
I-et the set (En) be the component of a simplex Sn-1o-1.
A'toop distance'is defined as the sum of distances between all vertices {xr, xz, ..., xo} of
(En) from the first point back to itself :
Lol = Ll(Enn) = dist(xt, x2)+dist(x2, x3)+...+dist(xo-1, x)+dist(xn, x1)
or more generaly :
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Lnl = U {dist(x1, x1), dist(xn, x1)}
i=l + n-l

j=2 _+ n

Let a n-simplex Sn = {(4,*r), (1n)}: the 'starred distance'Yln*1 is defined by the sum of
distances of the last point xp11 called the 'central', to each of the other points :
Y1r,+1 = { dist(xo*1,x1)+dist(xo*1,x2)+...+dist(xn*r,xn) } that is also:

Yln+r = \J { dist xn*1 -à xi) }
i=l -r n

(8.3)

Conjecture 1. An assessment of the dimension of a space Sdn = {(En*1), (ad)} can be
provided by a relation of the following type :
(td) = {(Yrn*r > k(n).Lnr <+ d>n-l)}n=2-a (g.4)
Tentatively, for n>l : k(2)=112, for n>2 : k(3)=2/3, while for n>3, k(4) and irs
generalization to k(n)*(n-l)/n is under consideration. This approach conjecturally
encompasses the Lebesgue cover-dimension tfuough iteration of n-conditions over (n =
2-+d) for a sequence of emboxed n-simplices.

Corollary 4. Consider a number (n) of sets {Ai}ri=r-ol embedded within a set E. Iæt E =
{Ai} v (D) where (4.1,-2): Âs({A1}) = E n {nA({Ai},D)}. Then E is comparable with a
simplicial canonical ball (9n) where{A;}represents the loop of a (n-1)-simplex and
A({Ai},D) a starred-like distance. Hence, Ào({Ai}) is analogous with Âgn (Llj.

3.4 Simplest cases of incompleteness and indecidability

Let set 6 = {a,b,c} be analyzed with the /(Id) process of measure described above, which
needs a formal system with essentially the following components :
/u( = {X=(E,1I,2,31), I = {.f: xr+/(x), =, *, e } }.
The result will be either {b,c} or {a,c} or {a,b}. Without a substantial supplement of both the
definition set and the combination rules, not formally predictable by recurrence in Ax, the
result is thus necessarily incomplete. For allowing completeness, one should accept to
include in Ax f(kl(x)) * x_ instead of tr(Id(x)) + x. However, in this case there is a sequènce
of probabilities (here pi=0.5) that the system stops before having scanned all the members
of E : /(a)=b, .f(b)=a , and the system may fall into a loop and thus give a false response.
Thus classical indecidability may fulfill the recurrent demonstration principle: if the
impossibility of finding qll theorems of a system is true, it may be true for a small as well as
for a large number of axioms. The cæe of a small system emphasizes the role of
anticipation: here there should be a outer set F from which upon connectivity of an
embedding space, each member of E would be surjectively mapped as image of a member
of F. But the structure of F should involve a number of members larger than in E, which is
not predictable from the system Ax since it cannot explore E with certâinfy. Indeed, the set
of parts of E tulfills the qualification for F, but while it exists, it cannot be known if E is not
elucidated before. Thus, indecidability is again proved in a recursive system. A further
argument would be that the content of E is assessed by CaraE=(n+l). However, this is
precluded by the fact of whatever the first term (x) taken by ld(x) in fn(Id(x), the internal
structure of (x) is not known. Not only it is not possible to assess what are the parts
composing (x) (this would just repeat for (x) the same operation as for E), but if (x) is a
singleton {+}, ne problem becomes even more unsolvable, as it will be shown below. Again
some imaginative anticipation would be needed in order to provide a general solution.
Similarly, the above system cannot verify whether the obtained path fn(Id(x)) is actually a
geodesic, excepted through an antcipatory process.
In a impressive effort, Chaitin (1998, p.20) has deviced a monstruous system as a
diophantine equation of 17,000 variables written over 2(X) pages, which shown typical

(8.2)
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indecidability. Now consider the above set E={a,b,c} reduced 1o g'={a,b}. Apply the f(Id)
method : it scans one member. Let us examine the case (a=b) : then the system cannot
return a solution although it includes just no more, no less than its initial axioms.
Incidentally, it is even more strictly incapable of deciding whether fl(Id(x)) is a geodesic.
This minimal formal case is illustrated by the example of tossing a strictly symmetrical coin,
i.e. without head nor tail engraved on its sides.

Remark. The complexity of a computer program, in algorithmic information theory, has
been identifled with the shortest program giving the expected output (Chaitin, 1998-1999).
The distance proposed here also applies to such cases. {p} is a set of N members written say
in binary digits. Hence ' 6 = {(0,1), p} is a set E={0,1} provided with combination rule p :
thus, G is a magma. If p provides it with some kind of structure, G candidates for a space of
magma. Its diameter can be derived from relation (4.2) :

max{(U,ry; c p I me {0,1 }, Âs(i, lj)} = length L(p) (e.1)
Let inf (L(p)) the shortest program. Then, in terms of a scanning tunction, one has:

inf. (L(p) = min { q(li,lj) ., p' } is a geodesic of space (p) (9.2)
Therefore, an elegant program in the sense of Chaitin is a geodesic in the sense of

our generalized distance.

4 Axiomatic limits on kno\ryability revisited

4.1 About some paradoxes and their formulation

Following the metamathematical results of Gôdel (1931), Church (1936), and Turing
(1937), Chaitin (1998) more recently claimed he had "exploded Hilbert's dream" of finding
"a small finite set of axioms and rules of inference that we could all agree on, from which
all the infinite mathematical truth would follow". In its algorithmic information theory,
Chaitin (1999, p. 84) argues that there are irreducible mathematical facts that can only be
deduced by adding them as axioms, and he even adds " So, not only Hilbert's faith in the
axiomatic method was wrong, in some cases it was completely wrong (Chaitin's emphasis).
Because to say that some mathematcal truths are ineducible means that they cannot be
compressed into axioms at all, they cannot be deduced from any principles simpler than
they are". Here, "simpler" may be a key-word of the sentence.
The Russell and Berry's paradoxes play with ordinary sentences that they confuse with
formal definitions of constructibility (see Chaitin,1999, p.9, or Grappone,20(X) for recent
examples). "The first ordinal that cannot reside within less than 'twelve' words" is
addressed in this sentence with eleven words (or even less if some unnecessary components
of the sentence are neglected). However, what is given is a property of something not well
defined, neither in the concerned number nor by the sentence words. Since numbers 'ten',
'ftfty' or'one' all take the same number of words (here: one), the system is biased by lack of
correct foundation of order relations and mappings.
Gôdel's completeness theorem states that given (T) an axiomatic system in lst order
language, and P a propositon valid for any structure consistent with (T), then P can be
formally deduced in a definite way from (T) (Weisstein, 1999c). Here, the concept of axiom
needs to be revisited æ in relation (1) : PeI ô E + Pe {X, -.1-, S1x,r;} ô {Y, T, S1v,r1}.
If M E L ^E,then since logicL and space E are defined, for any property P'eM, parts of
Z and E involved in the assessment of P'are contained in(L V E), that is: {tr' ô E'} ç

lL h Bl. This meets the property of a gauge which must belong to the ultrafilter of an
embedding space E if one expects that a measure will work for the evaluation of the
distance of A and B within E.
Some other pæadoxical sentences deserve attention, such as : P = "I am a liar" (Chaitin,
1998 ,p .12 ) .Oneana lys i so f t h i ss i t ua t i on i sa loop ,e .g . :P+ I l i e i nsay ing lama l i a r ' =+
thus lamno ta l i a r+ thus ld idno t l i e i nsay ing lama l i a r+ thus l t o l da t ru th insay ing l
am a liar + thus I lied in further saying I am not a liar + thus I am a liar = start of a
second loop, etc.
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In an algorithmic system, if the computer program halts when an output apparently
confirms the proposition, then the program eventually halts before the second loop starts
(e.9. "I told a truth..."), excepted if it takes the output as a statement to be evaluated.

4.2 Anticipatory computation versus spontaneous self-anticipation

The opposite propositions cited above just came alternatively. This can be compared with
Turing's system : if a subprogram H of P checks for the validity of P, P must evaluate H for
H can in turn evaluate P and the program goes into an infTnite loop. If H says that P will not
halt, but since H c P, H must not halt. Then, chaitin (1999, p. 16-17) wrote that "there is no
algorithm, no mechanical procedure, no computer program that can determine in a.dvance
if another program will ever halt". What Chaitin emphasized in bold character was
"another": but the expression "in advance" (my emphasis) deserves even more attention
since it means that such an algorithm is not an antcipatory system. This may conflict with
the concept of computed anticipatory processes, where an instructon about p(t+l, t+2, ...)
can be inserted in the definition of p(t). However, while such an instruction makes the
system anticipation-dependent, an instruction at step (to) contains an instruction for (to+kt)
which has been introduced before: thus since the anticipation has been programmed, it
becomes preexisting. This contrasts with a mental image of the future, spontaneously
foreseen by the brain, while the reality (whose successive images are equivalent to the
computer iterations) is progressively compared with the anticipatory image. Therefore the
following :

Remark. An anticipatory system could be considered strictly antcipatory, or spontaneously
self-anticipatory iff the initiative of inserting an anticipated instruction or its basic
justification comes from the system itself and was not already present nor
extemporaneously in8oduced in a former step of the process.
A strong anticipatory process in the sense of Dubois (2000) <lescribes how a decision first
arising in the brain of the programmer as a self-organized system, is further incorporated in
a computer program, where it turns into a incursive or hyperincursive process. Hence,
anticipaton would arise as a primary step, distinguishable from and resulting in incursive
modelization. Order relatons on sfiong and strict forms deserve further examination.

4.3 The case of claimed "strongest unknowability" reexamined

Refering to its "omega number" Chaitin (1998, p. 80) wrote : " (l really shows that some
areas of mathematics have no structure, have no pattern at all. (...) the bits of Q are
mathematical facts that are true for no reason, they're accidental!" The famous Ç)-number is
a computer program obtained by getting 4ll of its successive bits (written in binary
numbers) at random, by "tossing a coin", Chaitin explains (1998, p. l2). Here, both thê
system of consEuction and the deductions that were derived deserve some attention.

4.3.1 The construction of omega as a mathematical object.
Omega is a magma : in effect, it owns a domain set (X) = {0,1}, and a combination rule (W)
= "tossing a coin for randomly getting each bit of the program until the program halts on
the output at the pù step". The obtained result, if any, would represent one among all of the
combinations of the set of p bits that is one out of all members of the set of parts, i.e. (llz)p.
Omega is finally presented as contained in l0,l[ because it is claimed to be a probability
that p halts:

0  <  {Q  =2  2 -  t p t  }  <  I  e  {X ,W}  (10 )
p halts

In fact, equation (10) could reflect a so-called probability a priori (or mathematical
probability) P(e)a orioa = n(e) / N , would N be a known number of observation of event (e)
(here,P(e)"pr ior i=1/Qwith(e)=phal ts) .  I twouldbecomeatrueprobabi l i tyasal imi tof
the former for N -+ - Since N-l attempts fail and one succeeds, the o posteriori
probability would be P(e)a posreriori = 1 / (N-1 + 1) = 1/N. Thus it is the experimental
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assessment of success and failing through N tryings that estimates the expectancy of a
success at the N+l trying. Unfortunately, since N cannot be known, none of these
probabilities can be actually calculable. This is a putative probability rather than a true
probability. However, there lurks another problem in the status of omega.

4.3.2 Omega as a practically inconstructible object.
Experiments on large numbers (5,000 tryings) showed that the operation tossing a coin
unforfunately does not practically generate a random distributon (Beltrami, 1999). This is
due to heterogeneity of the coin as well as of the movement. Suppose that the movement is
perfect random. Since one side of the coin is head and the other is tail, there is a difference
in the engraving of the coin which results in nonrandom behavior. Even engraving just 0
and I (i.e. the definiton set) would also result in heterogeneity, at least since a bar and a
circle are not homeomorphic. Therefore, trying to solve the question so as to be able to run
the protocol randomly needs that nottring should be engraved on the coin. Thus, the result
could be perfect random, but after tossing, it would become impossible to know which side
(one for zero, the other for one) has actualy appeared though one really has. Hence, the
result is that not only Q is the most uncomputable number, the most random one, the most
incompressible one (dixit the author) but its very existence also seems questionable, not
only in the Brouwer's constructivity sense, but even in principle. However, it has been
proved (Bounias and Bonaly, 1997b) that so-called 'unexisting' objects cannot
'mathematically' exist. So, omega can hardly really escape the field of mathematcs.

4.4 Generalized formalism and the power of anticipatory mathematics

Recall relation (1) : P e {X, J-, Sc,rl} ô {Y, T, Sc,D} in which the actual axiomatic system
is a space of magmas composed with the intersection of definition sets, combination rules
and the relevant structures of a reasoning system and a probationary space :

(Ax) = {(X a Y), ( I ôT ), ( S(x,r) ô S(v,r) } ( l 1 . 1 )
={set F, combination rule C, structure S} = {F,C,S}.

Recall that (l- rr T) may result in new combinations of rules pertaining to neither of (l)
and (T). Now, consider that F, C and S are members of the set of axioms : since all three
categories of concepts can be axioms, their combination is also an axiom, just more
complicated (F,C,S also are sets of mathematical objects, so that their unions still are sets of
such objects). Let us make some anticipation (perhaps as strictly as defined above) and
consider the set of parts of this set :
P(Ax)  = {F,  C,  S,  {F,C},  {F,  S} ,  {C,S},  {Ax}} (r1.2)
Among these sets, predicted by the basic set theory, one denoted {F,C} is strictly a magma
composed of a set and a combination rule : therefore it has no structure holding on its
members (at least unless the additional axiom of functionality allows the rule to be
operating on the set, which would lead to a new object different from just pafi {F,C}).
Compare with Q e {X,W}, then : X=F, lil = C.
Therefore, even Chaitin's number, said to have no structure, and even not existing, is
predicted by a more general conception of an axiomatic system as depicted in the first part
of this study. This is further confirmed by the fact that would Çl exist, it would belong to X,
not represented in {F,C}.

4.5 The 'power set of partsr and Hilbert's dream reconsidered

Suppose that the propositon that aU knowledge could effectively be derived ftom a finite
number of axioms, is true. Then, any new concept must belong to some combination of the
primary set of axiomatic elements, that is to the set of parts of the set of parts of ... of the set
of parts of the initial axiomatic system. Therefore, tlere could not exist any concept
pertaining to one mathematical branch that would be totally independent of some other
mathenatical branch. This provides a clue for revisiting the validity of the proposition.
Consider, now, the alternative hypothesis that a deflnite part of the whole of possible
matipmatical knowledge arises with absolutely no link with some other knowable branch.
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This implies that there could exist two systems having empty intersections of their respective
sets, rules and or logics. In other words, there could be a set that could not be defined
through similar principles used for other sets, rules with absolutely no link with others, and
logics that would be described with no common concept or expression. This raises the
alternative of either a construction through combinations of combined parts, or a descent
by decomposition into elementary founding parts, both indexable on ongoing tme.

4.5.1 Definition and some properties of the power set of parts

Propoeition 5.1. Z (Ax) an axiomatic system, and f(Ax) the set of parts of (Ax). Then, the

set of parts of ?(Ax) is ?(f(Ax)) = Qz(Ax). Running the same process n times provides :

e@.,.(e(Ax))...) = ?n(Ax) which represents a countable sequence of axiomatic systems,

with n e N. Each member of the sequence {?i(Ax)}i contains its predecessor and is
contained in its successor. Thus, the power set of parts is ordered, but it may not necessarily
have boundaries, as this will be considered below (relation l2).

Corollary 5.1. Denote by uK the totality of possible knowledge contained in a power set

of parts {@(Ax) }nç p and k a member of this set : hence, k e @(Ax).

Then, for any other axiomatic system Bx + Ax, one necessarily has: Bxe?n(Ax) =r

Axc(Bx) or Bxç(Ax). If Bxc(Ax), then tlere exists (Bx) and there also exists a particular

integer m such that: (Ax) E @(Bx). Therefore, (Ax) reduces to (Bx).

Proposition 5.2. The Hilbert's conjecture implies that there would exist no theorem (that is
no part of the parts of a axiomatic system) which would not belong to the power set of parts
of any axiomatic system.
Given Ax(X,r) = {(X={E,I,S(rr)} ô (F,T,S1nry)}, with NE, Nl-, ... , the number of
member objects of each subset of X and L, then the power set of parts of Ax includes the
combinatons of the power sets of parts @(X) andlP(t), so that :

"utd4a{A*) 
". 2e*p { 2exp. . .lâexp { 2(Ne+t'tr+Nr+Nr+N(sD+N(sFD) } } } Q2)

n umes
From finite numbers N,..., one obtains a infinitely denumerable combinations of
intersections, and thus of predicates. This may be not enough to encompass the whole of
mathematical knowledge, but enough for knowledge of a finite world. Then, from
denumerable sets of parts ?n(X) and ?û(t), a polver of continuum could emerge for the
resulting axiomatic power : whether this would realize Hilbert's dream therefore remains a
open question, since a not denumerable axiomatic system could actually arise from a finite
set of primary axioms.

Corollary 5.2. For any two axiomatic systems(Ax) and (Bx) as remote from one another as
possible, one should have at least the following property, since parts of Ax may not be an
axiom for(Bx) and conversely : @(Ax) à!F(Bx) + Q

4.6 A strange convergence problem

A set like fn(Ax) is the union of the members of the sequence, thæ is :

@(Ax) - {A*, Ax+l, Ax+2, ..., Ai,, ..., Ax+n}
However, Ax could itself be the last term of a descent, so that it can be decomposed into :
{A " } "  -  { 41 , . . . , 4k , . . . ,  A (x - l ) }

If the sequence {fu}* is convergent to some (Ao), then (Ao) stands for an axiomatic system
fulfilling the condition holding in Hilbert's dream. Here, ?n(Ax) would have a lower
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boundary.If however the sequence does not converge, two cases deserve attention. (i)
(condition C-1): @ c Ao c Ak : then, the axiomatic system can be defined by existing'
tfrougn not identifiable boundaries. (ii) (condition C-2): Ao c @ which indicates that the
mem-bers of Ao shoukl be defined by anti-existence properties, that is in a anti-constructive
way. In this case, orùy what Ao is not, could be stated, not what Ao is.

Lemma 5.3. The boundaries of a sequence {"i(Ax)}i are not necessarily the limits of the

sequence. In effect, tlre space of {fl(Ax)}i is discrete but not necessarily finite. It can thus

be only locally compact within finite subparts. Thus, {?i(Ax)}iis bounded by a - not
necessarily knowable - lower boundary which is not necessarily a limit.

Remark. Even Chaitn's omega number does not tulfill condition (C-2) although it might
be the known object closest to condition (C-1). The conditons stated by GÔdel, Chiirch or
Turing are valid lor some axiomatic systems not devoid of connections with more complete
axioniatic systems on which they no longer hold : their underlying reasoning systems fall

into a category such that 4n(Ax) à!F(Bx) *Q .

Corollary 5.3. For any given (Ax), one has (Ax) e ?n(Axo) eventually not knowable.

However, if fm(Axo) c ?n(Ax) , then ?m(Axo) contains both some elements of (Ax) and

some elements of ?n(Ax) which is larger than ?(Ax). Then, (Ax) is knowable. More

generally, an axiomatic system 41= { Ax1 } i is founded on the union of the founding axioms

of each of its components: tJi{Ax1o}1, which is likely to be gen€rally $rger F- 4l itself...
Consequently, the^answer to Hilbert'3 dream may be that a "finite small number of axioms"
may nôt be a "shortest" nor a "simple" one,since, owing to -relaton (12), the whole of
knôwledge actually available from even a finite small number of axioms may not be
practically expressdd within a finite lapse of biological time or human generations.

4.7 Mental imaging and anticipatory solution

Theorem l' The formal assessment of an exception to the Hilbert's dream potentially results
from a mental antcipatory process.
Preliminary proof. Sirppoie-that there exists a yet unknown system (Yx) such that, contrary

to Hilbert's conjecture' one has rh(Yx) ô ?n(Ax) = o. Since (Ax) is known, ?n(Ax) is at
least knowable too. Thus, in the neuronal system of a skilled mathematcian, there exists a

structure of mental images Im{?m(Ax) } reflecting 
"n(Ax) 

. Then, (Yx) cannot infer ftom

Im{?m(Ax)} which stands for the past and for recursive processes. Consequently, (Yx) can

infer only from the prior elaboration of a set of menJal images Im(Ax)-:.this provides the
knowledle of (Yx) ùitn tfre characteristics of an anticip-atory process, which completes the
argumenlaton supporting the theorem in former parts-oi Ft :!oOy' .
TÈ'is further prèôtuOei that any knowledge could be "in principle" unreachable.
Incidentally, pârt of a set used foi self-evaluaton of.the set gives raise to a power set of
these parts-which will actually allow a surjectve mapping to apply on the complete set'

4.E Anticipation between actual and potential axiomatic parts

preliminary statement. While the set of parts of a set exists if the set exists, its availability to
further reasôning must be stated as either a structure or a combination rule in consistency
with the other members of the same axiomatic system. Hence :

Lemma 5.4. If some elements of a demonstration holding on â set En = {e1, .-., e1} are
not explicitly available unless some additional condition must be fulfilled, then this
condidôn mu3t be incorporated to the basal axiomatic system as 'axiom of availability'.
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Proof. I-et the set Ez = {a,b}, and suppose one needs to use its Cartesian product without
assuming that (82) is available in duplicate. Then, the availability of the members of the
cartesian product is not even immediately valid from the set of pafis of E2 . In effect, at least
the second iterate of the power set is required :
!P(F'; = {a,b, (a,b)} u O.
e2@ù - {a,b, (a,b), [a,(a,b)], [b,(a,b)], (a,b), [@,a,b, (a,b)]] u o.
The unordered pair (a,b) is contained, as a member, once in e(Bù nd twice in Q21n) :
thus only P@ù allows the cartesian product to be obtained from (a,b) x (a,b). However:

Corollary 5.4. A complete subset of the rational numbers is not necessarily provided in all
bases by the Cartesian product of a segment of natural numbers.
hoof. Let En = {1, ..., n} with n<9, and let two integers, p,e e En . Then, the pair (p,q) e
(En2) = Enx En . Usually, (p,q) accounts for the ratio p/q, so that the set of pairs (p,q) is
equipotent to the set of rational numbers noted as fractons : (ei.drdz...di )where ei.stands
for the entire part and d1d2...d1 ... for the decimal part.

Let n=4, and take p=1, q=4. Then the ordered pair (1,4) stands for the ratto l/4.
However, writing ll4 = 0.25 needs digit 5 to be available, whereas one has just 1,2,3,4
available, not 5. Therefore, in this system, since digit 5 does not exist unless the additional
axiom of the additon is introduced, the mapping of ordered pairs to the writing in base 10
of the corresponding rational numbers is not valid.
In his book "The Limits of Mathematics", Chaitin writes a kth computer program pr = 0.
d11dç2...d6...dpo . However, he uses the binary system, that is an axiomatic system in which
only digit (0) and (1) are available. Therefore, he cannot write the program unless he has
posed æ an additional rule that he gets the power set of parts of founding set {0,1}, that is :

{?N(0,1)}N. Therefore, in his intellectual processing and subsequent computed realization,
Chaitin has implicitly used an antcipatory process.

The use of such members of sets not previously made available implies that such an
implicit use should be considered each time a member is implicitly introduced as a new
axiom, which will belong to a class of 'axioms of availability'. Hence, some indecidable
propositions may become even more indecidable within the frame of classical set theory,
and the axioms of availability should be further examined with respect to the foundations
of set tneory. In particular, an extended axiom of availability would be needed to construct
a denumerable set from founding members. Eventually, this would further help in
strengthening the construction of nonwellfounded sets.
Each time a reasoning implies a step in which not all of the used elements have been first
introduced by former deductons, this reasoning is at best an lmplicitly anticipatory one. Its
validity is established iff it can be a posterion verified that the availability of the postulated
elements could have been demonstrated from the former steps of the reasoning process
used. Otherwise this remains at best a speculation.

5 Conclusions

(i) The reality of Chaitin 'Omega' number as the strongest case of axiomatic indecidability
claimed so far, is questioned by a collection of arguments involving anticipatory
components. (ii) A formal axiomatic system extended to a reasoning system based on
combined spaces of magmas turns into a new system with eventually no axiom at all.
Interestingly, the infering process leading to deducton of an axiom rather than arbitrarily
posing it seems to have been already considered by Aristotle, as argued by Malatesta and
Grappone (2000). (iii) Brain anticipatory processes can jump over barriers forbiding a
computed system to reach a result not directly infering from its program. A biological
brain results from a chain of self-organized systems and its anticipatory mental imaging
capability confers self-evaluation properties on it.
Then, upon self-understanding combined with interpretation of outside measurements,
biological brains have started building computers to which they have provided neural-like
and strong anticipatory properties.
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This may appear as a generalizaton of the completeness theorems, involving the role of
anticipatory processes in the search for the identficaton of hidden probationary spaces.
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