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Our society has replaced secret wisdom with information.
Secret wisdom results from joumey into unknown like Odysseus',
and like his. it never ends.

"ôare of the soul", Thomas Moore [1]

Abstract
Representation and manipulation of the world by models. Using world models for
reasoning and action purposes. Two types of reasoning forms: symbolic and
subsymbolic. Classification of subsymbolic reasoning forms by attributes of
communicability enumerability and robustness. Roles of system observers realised with
different subsymbolic technologies. Infioductio of circular qualitative algebra (CQA)
wittr its atftibutes of precision, robustness, learning ability, usability and interpretability.
Application of CQA to: pattern recognition, modeling of power plant combustion
process and nafïic accident modeling.
Key words: model circularity, subsymbolic model, qualitative modeling, qualitative

algebra

I Introduction

This paper deals with modeling algorithm for implementation of the reasoning process
in natural sciences. Such models are composed of the statement of the given situation,
actual action and intention ofwhat is to be achieved [2].
The modeling algorithm is based on data from world cases. The expected result of
modeling algorithm is the model that enables action in the real world. Any meaningful
action in the world requires anticipation of the expected results. There is no decision
without anticipation. Results of previous actions in the world are actually exemplified in
the world cases. Thus we are dealing here with modeling algorithm that is also an
anticipative tool.
A general scenery of data acquisition from world cases: observation of the real world,
expert role, intelligent machines and many facets of users critics and adaptive critics and
anticipative decision is given in Fig.l. The world is by means of such intelligent
machines represented and sometimes manipulated by humans. There is the necessity of
building different particular models of each of the activities given in Fig.l. Such models
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are built either by people, designers or by selforganized software programs - simple or
artificial intelligence tools. However made such machines enable final reasoning and
control about the particularities of the world, on the bases of which anticipative
decisions about actions are taken and corrections to the actions are tuned. The majority
of such actions occur in the real world or at least in the small part thereof - so it is our
duty to make such actions as feasible and as transparent as possible. rùy'ith adequate tools
for reasoning and anticipative decision making we might be supporting both
information and wisdom - a never ending task.

Fig.l: Observer - model - action - pay-offcycles in real world

2 Symbolic and subsymbolic reasoning forms

Reasoning is a circular anticipatory action of forming conclusions, judgement or
inferences. Circularity is hidden in all reasoning forms as a result of basic information
processing [3]. Circularity includes anticipative decision as illustrated in Fig. l.
There are two basic reasoning forms: symbolic and subsymbolic. Symbolic reasoning
forms are for example: logical rules, control rules, analytical mathematics, rule-based
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forms. Subsymbolic reasoning forms are generated in neural networks, fuzzy set logic,
and genetic algorithms. Subsymbolic reasoning forms are explicit or implicit according
to the nature of their results.
Explicit reasoning forms communicate the resulting reasoning model more or less clear
to the user. Implicit forms retain the secret of the resulting model to some degree.
Reasoning models can be described with a triplet of its internal states:
communicability, C, enumeration, E, and robustness, R" so that the relation

Mti(C,E,R) < Mç(C,E,R), t i < L < t j (2.r')

means: a reasoning model M has gained in its quality when between time instants t2 and
tr if there happens a knowledge change event at L, ( ti < Ë 

" 
ti ) that enhances its

communication ability, or decreases its enumeration space or increases its robustness.
An artificial neural network (ANN) communicates its outputs after its inputs have been
applied according to its trained structure. Its communication can be and is wrapped into
the implicit language of its own autopoiesis.
Such an ANN enumerates its communication in the frame of its output set discreteness
as well. Thus when it possesses one output that is trained to be changed between -l and
I in relevance steps of 0.01 the total output enumeration set equals to 199. Its input and
inæmal structural enumeration can be immense at the same time.
The robustness of such a network can be defined as the ability to work properly under
input error, structure disturbances and model changes. ANN is robust to input error and
structure disturbances and less robust to model changes, such as sigmoid function
change, etc.
Put into much simpler content any such artificial means can be constructed from the
observer and the actuator part, Fig. 2.

Fig.2: A simplified reasoning/action model: goal - observer - actuator

The basic formula for the linear observer is given when considering system input u(t),
state x(t) and ouçut y(t) signals [a] i.e.
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x(k) = Pl y(k) +P2 u(k-l) (2.2),

where Pl and P2 are polynomials of the n-l respectively n-2 order. Thus the state of the
system is calculated from n observations. The number of calculation steps can be even
higher in the presence of noise.
Actuators or better to say final process devices, possess nonlinearity that disables a neat
linearity of the system observability calculation and points to the inevitability of
application of heuristic or qualitative methods [4, 5].
Thus, let us reconsider the means of technical reasoning as observers and actuators in
the reasoning and controlling of the simplified outer world.
Principal scheme of an PID controller coupled to the system is given in Fig. 34 similar
scheme with ANN in Fig. 3b, with frrzzy set controller FSL in Fig. 3c and with the
circular qualitative algebra, CQA, in Fig. 3d.

FÇ 3l: Hclcouùoller

Fig. 3: Observer - actuator functions of four basic conhol mechanisms

As visible from the principal scheme the basic mechanisms of reasoning consist in
- observing the state of the system by comparing the input and /or output

state with the expected or presetted one
- intervening into the control inpu(s) in order to obtain the change of the

system state to the anticipated and more favourable one.

PID mechanism thereby compares the observed state with the presetted one, ANN uses
the preleamed output of the network in order to compare it somehow with the measured
output, fuzzy-set mechanism determines from the measured inputs and output the expert
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rule that must be applied for the actual system state, and CQA calculates the actual
model according to obtained system input and output data and determines according to
expert opinion about the system states and required anticipated interventions at the
input.
System observers are thus machine parts with double functions:

- to determine the state of the system, or put into the simplest form to
determine whether the state has been changed and in what amount

- to make the automatic and anticipative decision on what to do upon the
determination of the actual system state.

The actuator is a machine part that executes the command issued from the observer or
the decision maker.
A simple comparison of observer functions of four basic mechanisms depicted in Fig. 3
is given in Table l.

Table 1: Basic functions of different observer means
Means State determination Decision type
PID UO simal difference Automatic (expert defined)
ANN Inout sienal Dattern Trained
FS I/O simal erid Expert based rules
CQA IiO based model Expert programmed

3 Structural parameters of subsymbolic forms

Structural parameters of subsymbolic forms are: precision, robustness, leaming ability,
usability and interpretability. Parameters of the circular qualitative algebra will be given
after presentation of its basic algorithm.

3.1 Circular qualitative algebra - basic data processing
Any system can be described in terms of its input and output variables. A simple system
with rwo input and one output variable given in measurement and ranked form is
presented in Table 2.

Table 2: Measured and ranked variables from a three-event observation

* E - rank ofthe value in brackets

Let us suppose that all system variables are measurable in n successive moments. When
these measured values are taken and converted into a qualitative form, or put into a
ranking procedure of any kind, three n-point graphs can be obtained. If interested in
system behavior, one would like to make any type of system model by means of some
data processing. The simplest way to start would be to correlate qualitatively any
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Event I 2 3 Event I 2 3
lnput I 20 l0 5 Eûnl)* I 2 J

Input 2 5 t0 l 5 nûn2) J 2 I
Output I 4 2 2 fr(Outl) I 2.5 2.5



Teble 3: Oualitative evaluation uUoutput variable combinations
Event Rankdiff. at

I
Rank diff. at
2

Rank diff. at
)

Sum ofsquared
rankdiff. I -3

Eûn1Ffr(Outl) 0 -0.5 0.5 0.5
Eûn2)-WOutl) 2 -0.5 t .5 6.5

combination of simple input and output n-point gaphs. Intuitively one can make the
following combinations of correlations: In I correlated to Out l, and In 2 correlated to
Out 1, Table 3.

litative ofdifferent variable

When the Inl quantitative data are added to the In 2 quantitative data and converted to a
new n-point gaph a better qualitative correlation with Out I data are obtained Table 4.
Thus turning again to the quantitative aspect of system information by making
appropriate alçbraic procedure and going back to the qualitative evaluation a circalar
wcy of system modeling is introduced [6].

Trble 4: The case of complete qualitative correlation of the sum of input variables Inl

3.2 More complex operations in CQA

The subject of this part is to introduce some common features of algebraic operations on
the quantitative aspects of n-graphs and analyse the results of these operations in
qualitative aspect. Such n-graphs are strictly defined on dynamic across-the-time series
of measurements or by experts estimatable processes although a lot of freedom in
relative proportions of time measure is acceptable. The time intervals between steps
depend on the nature ofthe process and are outside the scope ofthe paper. The ranking
of time independent data series is considered elsewhere [7, 8].

Defïnition 3.1
An n-point graph is a single-valued discrete function defined in n points and obtained
from the ranking procedure ofa process measured values or from ranking procedure of
a Gôdel numeration of a more complex system behavior, where n>I.
However processed the sum of all n-gaph values is equal to

s = l + 2 + . . . + n =  
n ( n + l )  

-
2

In: Inl + In2

a(In)- fr(Out)
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and its mean value i, 
'* I

2

Definition 3.2
The n-graphs fr{g}, fr{g;}and fr{gi}will be designated as Gin, G;n and Gin.

Theorem 3.1
The n-point graph Gin is transparent to the scaling procedure, i.e., any linear operation
on its quantitative part with the constants a and b, does not change the graph or

8{a+ bgi} = E{gin }, for a * 0, b>0 (3.2).

The proof is tivial since multiplying all values with a constant does not change the
order of ranked values, nor does adding a positive or negative constffit. The meaning of
relation (3.2\ is the invariance of qualitative algebra under positive metric
transformation.
DeJinitian 3.3
The normalized quantitative values gin of the n-graph Gln are those measured or

estimated values of gi put into unit scale i.e. [gi] e {0,1}.

Definition 3.4
Two n-graphs are complementary to each other if and only if their rank values for each
period have complementâry values i.e. the sum of ranks equals n+l in each step of the
n-graphs.

Theorem 3.2
The addition operation introduced as calculation noise u/ on normalized values of two
complementary n-point graphs yields any n-point graph:

fr{gi + g;n + uf 1=g1grn}, Grn + Gin + G.i" fot Gin = (Gin)-t (3.3),

where the actual shape of the Gr.n depends on the quantitative noise of the components
gin and gjn and ( )-r denotes the qualitative complementarity feature.

Proof of theorem 3.2:
Introductory parts of the proof describes the nature of the quantitative - qualitative

transformation:
When graphs gin and g;n differ at only one point their addition in all points will give the
same graph except at the point of difference. Let us suppose that at this point the values
of the gin a and of the gjn is b, and that at all other points both graphs possess the same
values equal to a, such as the example on Table 5. The amount of noise at this point is
ten times lower than the difference a-b.
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Table 5: The of addition oftwo verv similar
period I 2 3 4 5 6 1

wo 0 0 0 0.1 0 0 0 period I 2 J 4 5 6
gro*wo 7 7 7 6.t 7 7 G,o 3.5 3.5 3.5 7 3.5 3.5 3.5
Prtr 4 4 4 ) 4 4 4 G,n 4.5 4.5 4.5 I 4.5 4.5 4.5

sf l l l l l l I  l . l I
I

l t l l Gl" 4.5 4.5 4.5 I 4.5 4.5 4.5

able 6: of noiseless addition of two sliehtlv less similar n-eraohs:
neriod I ) 3 4 5 6 7 Deriod a 3 4 5 6 7
grtr 7 "I 6 7 7 7 Gi 3.5 3.5 7 3.5 3.5 3.5 3.5
qro 4 4 4 4 4 4 G,o 4.5 4.5 4.5 I 4.5 4.5 4.5
!rD l l l l l 0 L2 l l l l l l Guo 4.5 4.5 7 I 4.5 4.5 4.5

The slightly greater difference in the graphs than those in Table 5 are given in Table 6.

Proceeding with less and less similar graphs the question arises about the addition of the
most disimilar n-graphs. These are the graphs that possess the feature of
complementarity of both the n-graph components of the addition process. Such two
complementary noiseless n-graphs are given in Table 7.

Table 7: Addition of two complementary noiseless n-graphs. Their quantitative parts

By the following operation on two complementary n-graphs

&n = gin +gn +wn (3.4),

where wn is a noise component, such as computation noise, any new shape of the
resulting n-gaph can be obtained, q.e.d.

33 Estimation of structural parameters of CQA

Precision is given approximately proportional to the length of the n-graph.
Robustness is approximately proportional to the inverse of the n-graph length.
Leaming ability is instant and absolute - using expanded complementary graphs during
system modeling the observer instantly selects the best model. Leaming can be even
enhanced by system evolutionary addition of best possible complex variables into a
selection process.

chosen as similar to the tiveare
oeriod I 2 3 4 5 6 7 period I 2 3 4 5 6 7
grn I 2 3 I 4 6 5 Gro I 6 5 7 4 .,

J

gio I 6 5 7 4 ) 3 G,o 7 2 J I 4 6 5
trD 8 8 8 8 8 8 8 Guo 4 4 4 4 4 4 4

220



Usability can be dubious because of the possibility of having a whole cohort of system
models - thus the expert must decide about the most usable model.
Interpretability although explicit is also problematic when the qualitative form is
complex. The possibility of using simpler qualitative analyic relations has been proved

as highly effective [9].

4 Examples

4.1 Recognition of a simPle shaPe

Two triangular forms are decomposed into respective x- and y-projections. The third
triangle is obtained by shift and rotation from two initial trangular forms. The data of
the new triangle projections are used as target function for the CQA algorithm. The
result is given in Fig. 4.

Xpon rXpoE+0'/t2XPoOrYPoO

Fig. 4: Modet of a shifted and rotated tiangle x-projection from
two other triangle and x and y projections

4.2l,evelof determinancy of turbine input parameters from boiler data

Basic boiler data of the fully controlled power plant are used as input variables [10].
The goal functions are turbine steam parameters: temperature, pressure and flow.
Determinancy is equal to squared qualitative correlation coefftcient. Resulting

determinancy coefftcients ô for 24-hours observation on 2l't February 1999. are:
- steam temperature, ô = 0.3364

6:0 .7744

22r
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- steam flow, ô:0.9044.
Similar results have been obtained for the whole period of 50 observation days.

4.3 Model of road trallic accidents

Model input variables are taken from the 36 months observation of the main and basic

influential trafftc parameters [l l].
The resulting model of the injured people is, Fig. 5

M r=.e25 : (Gasoline consumption.)*(Mean temperature)+
0.57 0 I (No.of accidents*No. of motor vehicles)

<r.92$ Orrolln't .n.t m9{O,570r(Accld.d3'Vehbbû} l52A00l

(3.5).

i+ tod€ |1
- - . -  Co. r  i

Fig. 5: Model of injured people in road traffrc accidents
from basic traffrc variables

5 Discussion

The circular qualitative algebra introduces a subsymbolic reasoning tool that possesses

the ability of explicitness not principally met in other subsymbolic reasoning tools such
as artificial neural networks or fuzzy set logic.
Comparison of basic parameters of such tools gives:

- precision of CQA is lower than ANN for smaller data series
- robustness is of the order of ANN decreasing with greater data series
- leaming is very fast, reproducible and selfenhancing
- usability of CQA depends highly upon the expert

1  2  g  1  5  6  7  I  g  1 0 l l 1 2 1 3 l i l 1 5 1 6 t 7 1 6 l r æ 2 1 ? 4 2 a 2 1 2 5 : 6 2 7 2 8  æ ! 0 3 1 3 : t 3 i t 3 4 3 ! t 3 6
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- interpretability although explicit can be encapsulated, but set-similar

interpretations can be intoduced [12]'
Regarding the modeling possibilities it can be pointed out that the method is specially
well applicable for nonlinear stochastic processes.
Another problem of general optimality of the solution is solved with the proof of the
Theorem 3.2. Such optimality is principally not the feature of ANN and FSL'

6 Conclusion

The circular qualitative algebra is introduced as a reasoning model that explicitly uses
the circularity feature of qualitative and quantitative information aspects of the collected
data. The method produces anticipative model(s) of the goal functions that are selected
from the most similar model variables in a way that is algebraic simple, precise enough
and practicaly instant. As presented in the work such models possess the feature of
general optimum.
Usability of such models for reasoning and their interpretation are intuitively clear

although somehow encapsulated because of the qualitative nature of the model form.
Modefconversion to quantitative values is straightforward for well correlated models.
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