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Abstract The power of daily communication and commonsense rea.soning lies in the
use of natural language. The importance of computing with words has increased
tremendously over the la^st decades and will continue to do so during the ones to
come. A key-role in this process is played by linguistic variables, i.e. variables
whose values are linguistic terms. Since these terms are often vague, they cannot
be modelled by classical set theory in se. In this paper we point out the importance
of linguistic terms for the representation and the manipulation of knowledge. We
describe how atomic terms, logically composed terms and modified terms can be
represented using the framework of fuzzy set theory.
Keywords: linguistic variable, linguistic term, modifier, vague, fuzzy set theory

1 Introduction

During millenia yet, people tend to express real-life information by means of natural
language; it allows them to reason about everyday issues within a certain (tolerated)
degree of imprecision. A successful approach to close the gap between artificial and
human intelligence could therefore be the use of natural language as a tool for knowl-
edge representation in computer systems. Indeed, the importance of computing with
words has increased tremendously over the last years (Zadeh, 1999 127,28)) and it
will grow even more in the years to come (Zadeh, 2000 [29]). A key-role in this pro-
cess is played by linguistic variables, i.e. variables whose values are linguistic terms
contrastively to the numerical variables with numbers as values.

Linguistic terms however are often intrinsically vague, which means that it is
impossible to give exact bounds for them. A query like "List the young salesmen
who hate a good selling record' (Gaines, 1977 [7]) is perfectly comprehensible to
humans despite the appearance of vague terms such as young a,nd good. However
in order to make the sentence suitable for a classical database system, it needs to
be transformed in a query like "List the salesmen und,er 25 years old, who haue sold
more than 20000 pounds of good,s." As a consequence the system will not select the
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girl of 26 with a very good selling record, nor the Suy of 19 years old with a selling
record of 19000 pounds. This counter-intuitive result is due to the fact that there is
actually no particular age at which one abruptly stops being young (and likewise for
the amount of pounds and the term good). One can enumerate some ages which are
definitely young and some ages which are definitely not young, but the transition
between being young and not being young is gradual. Classical set theory (also
called crisp set theory) in se lacks the ability to deal with vague information in an
appropriate manner. In this paper we will outline how such vague linguistic terms
can be modelled by means of fuzzy set theory (Zadeh, 1965 124D, a framework built
on top of crisp set theory.

2 What is a linguistic variable?

Informally a variable is called linguistic as soon as its values are linguistic terms
rather than numerical ones (Kerre, 1993 [10]). In his founding papers, Zadeh (1975

[26]) gives a formal definition which we slightly modify here:

Definition I Linguistic Variable A linguistic uariable X is characterized by a
quadraple g(X),U, G, M) with

. T(X) being the terrn set, i.e. the set of linguistic ualues of the uariable

o U being a uniuerse of discourse

o G being a syntactic rule for generating the linguistic ualues

o M being a semantic rule for attaching meaning to the linguistic ualues

Note that this definition covels a wide range of possibilities. E.g. "rather poorly"
ca.n be a value of the variable driving skills, "not very young and not very old" can
be a value of the linguistic variable age, "sweet lemonade" can be a value of the
variable soft drink, "singing" can be a value ofthe variable hobby "pencil" can be a
value of the variable tool, etc. In all of these examples the terms in T(X) a^re com-
posed of adverbs (e.g. rather, very), adjectives (poorly young' old, sweet), logical
connectives (not, and), nouns (lemonade, pencil) and verbs (singing). In theoretical
studies and in applications however this class is restricted to a much smaller set of
linguistic terms, which is still very expressive. The narrowing process can be done
by imposing a specific rule G.

Syntactic rule G

A term is either an atomic term, a logically composed term or a modified term.

1. An atomic term is an adjective.
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Variable Terms
age
height
weight
blood pressure
temperature

young, not very old, not )oung
tall, short, rather short
heavy, medium, extremely light
rather high and not very high
hot, very hot, extremely hot, absolutely hot

lable 1: Linguistic variables and some of their terms

2. A logically composed term is a logical composition of terms using not, and
and or.

3. A modified term is a term generated by applying a linguistic modifier (very,
rather, more or less, slightly,...) to a term. tr

Table 1 shows some examples of linguistic variables and their terms, generated by
meaus of G.

In (Novrik, 1999 [16]) the terms generated by G are called evaluating syntagms.
Among the atomic terms, one can distinguish a primary term (e.g. old), its antonym
(young) and a medium term (middleaged). In (Novr{k, 1999 [16]) these a.re called an
evaluation linguistic trichotomy.

Most often the universe U is a subset of lR: e.g. [0, 120] as a universe corre
sponding to the linguistic variable age, [0,30] corresponding to blood pressure, N
corresponding to the amount of people present etc. However the universe U can
just as well be non-numerical: e.g. the universe of female students on which terms
as "beautiful", 'lery beautiful" and "average" of the linguistic variable appeæance
can be modelled.

The most intriguing question is of course how to attach meaning to these linguis-
tic terms. In this paper we will address the question of constructing a semantical
n:Je M to this purpose. In Section 4 we will explain that the meaning a.ssociated
with a linguistic term can be mathematically represented by a fivzy set on U. How-
ever first we will show that the class of linguistic terms that can be generated by G
is an expressive tool to tackle many real-life problems.

3 Where do linguistic variables appear?

As we stated in the introduction, the power of daily communication and common-
sense reasoning is based on the use of natural language. The linguistic terms that are
used in this process are most often vague. Sometimes this is due to a lack of precise
information, for instance "I do not eractly know his age, but he looks o/d." However
even when exact numerical values are available, experts tend to transform these val-
ues into linguistic ones. For instance a physician will usually translate a numerical
measurement of a blood pressure into linguistic specifications such as normal, very
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high, too low,... This is due to the fact that he has to combine this information
with other data, which makes diagnosing a complex task. Computing with numbers
demands a high level of precision, which is incompatible with high complexity (the
so-called principle of incompatibility (Zadeh, 1975 [26])). Computing with words
however requires a lower level of precision; hence it is far more suitable to perform a
highly complex ta.sk within a certain tolerated degree of imprecision. Humans seem
to apply this technique spontaneously (cfr. the diagnosing doctor). Computing with
linguistic terms however can also aid computers to deal with problems of a high level
of complexity.

There is even more benefit: since natural language is mankind's favourite way of
communication, expressing information in computer systems in a linguistical manner
makes it far more easy for non-computer experts to implement their knowledge in the
system, to give the correct input, to interpret the output,... to understand machines.
The following examples indicate some of the potentials of computing with linguistic
terms to tackle real-life problems.

Databases In the introduction we mentioned a part of the query "List the young
salesmen who haae a good selli,ng record for household, good,s in the north of England'
(Gaines, 1977 l7)). \Mhen being able to compute with linguistic terms, this query
can be launched on a database containing crisp values, i.e. ages, amounts ofpounds
and locations expressed in numbers, and goods expressed in numbered categories.
However the attribute values in a database can also be linguistic terms. When
constructing a table with information on language skills of candidates for a job

opening, it might be far more easy to express these using some linguistic term
instead of a number. The table will contain e.g. the following attribute-value pairs
for a candidate: (dutch, excellent), (english, very good), (french, good), (german,
poor). See also [23].

Expert systems Using linguistic terms allows for approximate reasoning, i.e. a
rea.soning which is neither very precise, nor very imprecise (Zadeh,1975 [26]). The
linguistic terms can be used to express knowledge with relation to the variables used
in the facts and the rules. For instance a diagnose expert system may contain the
following rule:

IF cholesterol level is very high and patient is corpulent and age is middle
THEN heart disease risk is high

which is a typical exarnple of a rule handled by a physician. Computiug with
linguistic terms allows for the direct implementation of this rule in an o<pert system.
A possible fact that can be matched with the above mentioned rule is

cholesterol level is rather high and patient is corpulent and age is rather young
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which allows for the deduction ofa new fact, e.g. "heart diseose risk is rnore or less
high." (For details regarding the deduction we refer to (Ruan, 2000 [1S]).) In this
ca.se the facts are also formulated by means of linguistic terms. It is however very
common to implement the reasoning process by means of linguistic rules, but to give
the system a crisp input, e.g. a number generated by some mea.surement tool. For
example the intelligent wa"shing machine, with rules like

IF dirtiness of clothes is large and type of dirt is greasy
THEN wa.shing time is very long

receives its two numerical inputs from a sensor. The calculated wa.shing time is
again a number, used to control the wa,shing machine.
The benefits of such systems are obvious:

o One single linguistic rule can replace many numerical rules. E.g. in the diag-
nose expert system it is practically impossible to formulate all the knowledge
in numerical rules like

IF cholesterol level is 225 and body mass index is 26 and age is 35
THEN heart disease risk is 10

o Humans can implement their knowledge in the system in a natural,linguistic
manner. The same applies for the inputs and the outputs of the system.

Of course the meaning of the linguistic terms involved still needs to be defined
by the expert and represented mathematically. In the next section we will discuss
how this can be done by means of. fuzzy set theory. If the rea"soning mechanism of an
expert system is based on fuzzy set theory, it is called a fuzzy expert system. If the
input and output are crisp numbers, it is called afitzzy control system. These kinds
of systems are probably the most popular application of fuzzy set theory nowadays,
in all kinds of domains ranging from washing machines over photo carneras to power
plants and many more. See e.g. (Babu5ka, 1998 [1], Ruan, 2000 [19]).

4 How to represent linguistic terms?

To be able to compute with linguistic terms, we need a rvay to represent them
mathematically. Thanks to the syntactic rule G, the linguistic terms of a variable
are structured. This facilitates the construction of the semantic rule M. After
discussing the representation of terms by means of ftizzy sets in general, we will go
into the representation of atomic terms, the representation of logically composed
terms and finally the representation of modified terms. If X is a variable as defined
in Definition 1, a term of T(X) can be represented by aTuzzy set on U.
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Definition 2 F\rzzy set (Zadeh, 1965 [24I. A fuzzy set A onU is a U- [0,1]-
mapping, also called the rnembership functi'on of A. For all r in U, A(r) is called,
the mernbershi,p d,egree of r in A. The class of all fuzzy sets onU is d'enoted F(U).

The semantic rule M is therefore a mapping from 
"(X) 

to f (U) that associates
with every term t in T(X) its meaning M(t), which is afizzy set on [/. For all r in
U, M(t)(r) denotes the degree to which r belongs to the fizzy set M(t). M(t)(ï)
can also be considered as the degree to which s "satisfies t" or "is compatible with
t ."

As we said above, in this section we will go into M(t), M(nort), M(tL and t2),
M(fi or t2) and M(h tL) with t being an atomic term, f1 and tz arbitrary terms and
â. a linguistic modifier. First however we recall some important concepls of fuzzy
set theory.

Definition 3 Kernel, Support Let A be a fuzzy set on U. The kernel of A is
defi,ned as

k e r A : { n l n e U n A ( r ) : t 1

It is the set of all objects that d'efinitely belong to A. The support of A is defi'ned' as

s u p p  A :  { a l t  e U  n A ( r )  > 0 }

It is the set of all objects that belong to A to some d,egree greater than 0.

Definition 4 Inclusion For A and B fuzzy sets on U the i,nclusion is defined as:

A ç B iff A(n) < B(r), for aII r in U

4.1 Representation of atomic terms

One of the most difficult tasks in designing a fuzzy system is the construction of
appropriate membership functions for the linguistic terms involved. Membership
functions are context dependent like the terms they represent (e.g. large in "a large
mouse" vemus in "a la,rge elephant"), and dependent on the observer (e.9. the mean-
ing of young according to a 5 year old child versus a 70 year old man). Despite the
importance of the matter, not much attention has been paid yet in the literature

to the design of membership functions. The methods proposed in (Klir, 1995 [12],
Mason, 1gg8 [14], Verkeyn, 2000 [21]) turn results of an inquiry into membership
functions or help experts to transform their knowledge into membership functions.

In most applications (especially in finzy control), the universe U is numerical
(often a subset of R). In these cases typical shape functions are at hand, which
simplifies the ta.sk. Such general shape functions are dependent on some parameters

that can be adapted to the context as well as to the observer. Their shape is con-
sidered to be acceptable from a psycholinguistic point of view for the representation
of linguistic terms (Hersh, 1976 [0]). we will give an overview of the most popular

shape functions; for more details we refer to Kerre (1993 [10]).
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Fig. 1: a) S-membership function and complement of S-membership function b)
zr-membership functiou and fl-membership function

S-membership function The S-membership function ,5(.; o, Ê,1) is an increasing
function defined by three real parameters a, p and, 1. As shown in Figure la
a determines the support (equal to ]a, +oo[) aud "y determines the kernel (equat
to [7, *oo[), while p : ry corresponds to the so-called "crossover point." The
complement of the S-function is defined by (1-S(.; a,0,ù)(n): 1-S(r; a, p,1),for
all r in IR" The S-memberhip function is suitable for the representation of increasing
notions (old, tall, high,...) while the complement ca^n be used for decreasing notions
(young, small, low,...).

zr-membership function The zr-membership function r(.; 0,ù is defined by two
parameters p and 7. As Figure 1b shows, the kernel of this membership function is
{7} while the support i. ]Z - Ê,t + 01.

If the increa.sing and the decreasing part of the membership function are both
linear, the finzy set is called triangular. The zr-membership function is used for
the representation of approximating notions, notions that are supposed to have a
more or less fixed value (about 140 (pounds), approximately 2 (years)). F\rrthermore
it is also used to represent increasing and decreasing notions in the non-inclusive
interpretation. In this paper however we only consider the inclusive interpretation.
For details regarding the non-inclusive interpretation, we refer to Kerre (1999 [11]).

fl-membership function The lI-membership function tI(.;a, 0,1,6) is charac-
terized by four parameters. As shown in Figure 1b the support is ]a, ô[ and the
kernel i"l0,ll.If the increasing a"nd the decrea.sing part of the membership function
are both linear, the fuzzy set is called trapezoidal. The lI-rnembership function is
suitable for the representation of notions that can vary between some bounds, like
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approximately between 4 and 5 p.m., and medium terms like middleaged, medium
weight.

Thanks to the structure imposed by the syntactic rule G, only the membership
functions of the atomic terms have to be constructed from scratch, for the fuzzy
sets representing logically combined terms and modified terms can be derived from
them.

4.2 Representation of logically composed terms

The representation of logically composed terms can be realized by means of tools
from fizzy logic (in the narrow sense (Novii"k, 1999 [16])), i.e. the many-valued
([0, l]-valued) logic dealing with vagueness. In fuzzy logic, negation is a [0, 1] - [0, 1]
mapping:

Definition 5 Negation A negation N is a decreasing [0, 1] - l0,ll mapping satis-
lyins N(0): L and.Â/(t) : L

Deûnition 6 .Â/-complement For a negation N and a fuzzy set A on U, the N-
complement of A is a fuzzy set on U denoted, by coy(A) and defined, by

coy(A)(r): N(A(x)), for all s in U

Negations belonging to the Sugeno class are determined by a parameter ) in I - 1,
*oo[ and defined by yVi(r) : #, for all r in [0,1]. Those of the Yager class are
determined by a pa^rameter w in ]0,+oo[ and defined by N!,(r): (1 - x')*, for
all r in [0, f]. tr.' : I characterizes the most popula,r one, also called the standard
negation Jr4@) : L - r. This negation is widely used for the representation of not,
i .e.

M(not tr) :  coq(M(t))

although others can be used as well.
Let [0,100] be the universe ofages expressed in years. To represent old in Figure

2athe S-membership function M(old) : S(.;50,60,70) is used. Hence not old can
be modelled by M(not old) : 1 - S(.;50,60,70). Note that this is different from
M(young)  -  1 -  ^9( . ;20 ,30 ,40) .

ln fuzzy logic, conjunction and disjunction axe represented by [0, 1]2 - [0, 1] mappings
called triangular norms and triangula,r conorms respectively.

Definition 7 Triangular norm A triangular norm (or shortly t-nonn)T is an in-
creasing, associat'i,ue and commutatiue 10,1]' - [0, tl-mappi,ng that satisfies T(t, n1 :
r, for all r in 10,1]i.
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Fig. 2: a) Complement b) Intersection and Union

Definition 8 Triangular conorm A tri,angular conornù (or shortly t-cononn) E
is an i,ncreasing, associatiae and comrnutatiue [0, 1], - [0,L]-mapping that satisfies
5(r,0) :  r ,  for aI I  x in [0,L].

Some examples of t-norms and t-cononns axe given below:

t-norms
Tu r ,U )  = I t U

Tp(x,y) -  r .a
Tr,(r,y) : miD((O, t * y - l)

t-cononns
r ,U ) : T , U

E p ( r , A ) : t * y - n . y
E r , ( n , y ) : m i n ( l , x t U )

Definition 9 I-intersection, .9-union For a t-norrn T, a t-conorm E and two
fuzzy sets A and B on u, the T-intersection and, the E-union of A orut B are the
fuzzy sets on U d,efined, by

(Anr B)(x) =T(A(x),8(r)) ,  for al l  r  in U

(,4 u5 B)(r) = S(,4(z), B(*)), for all s in U

and and or can now be modelled by means of intersection and union respectively:

M(t1 and tz) : M(t) n7 M(t2)

M(t1or tz):  M(t)uE M(t2)

Figure 2b depicts the membership function of young or old computed for E : Eu,
as used in the rule "If you are young or old, you get a 50 percent reduction on the
train f'are." F\rthermore the fuzzy set for not young and not old was constructed
usingJ( andTu. The resulting Il-membership function can be used for middleaged.
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4.3 Representation of modified terms

A linguistic modifier â such as very, more or less, rather etc. can be represented by
a F(U) - F(U) mapping rn, which is called a h,nzy modifier (Thiele, 1998 [20]), i.e.

M(h t)  :  m(M(tr ,))

Definition lO Fuzzy Modifier (Kerre, 1999 [11]) A fuzzy modifierm onU is a
f(U)-f(U) mappins. mis calledrestrictiue (etpansiue)iffm(A) ç A (AÇm(A))

for all A in f (U).

If a U - [/ mapping s and a [O,f] - [0,1] mapping r exist such that rn(A)(r) :

r(,a(s(z))) for all r inU, then m is called decomposable, and s and r a.re called
the pre- and the postmodifiers respectively. These kind of fuzzy modifiers are often
used to model linguistic modifiers, especially for r the identical [0' 1]- [0, 1] mapping
(pure postmodification) or for s the identical U -U mapping (pure premodification).
In this section we will give representative examples for both categories and we will
point out their main (dis)advantages. Then we will go into a recently developed
new âpproâch which helps to overcome the previously mentioned disadva^ntages by
providing the fiizzy modifiers with a clear semantics.

4.3.1 Postmodification

Let A a.nd B denote fuzzy sets on [/ and r in U. For a € [0, +oo[, the powering
modifier Po is defined by P"(,a)(n) : A(r)" (Zad'eh,1972l25l)' For o ) 1, Po is
a restrictive fuzzy modifier, while for a ( 1, Po is expansive. The a-values 0.5 and
2 are often used (see e.g. (Babu5ka, 1998 [1], Yasmuk, 1998 [22]):

M(more or less t l ) :  P0b(M(t l ))  M(very tr) :  Pz(M(tr)) .

Figure 3a shows an example of the application of Pz on an S-membership function
for old, generating very old. The powering modifiers are easy to use on all kinds of
univers* They respeet ni,ee pssperties rgr-çJ- cornFlement, nninn and intetsection -

For example:

M(very (young or old)) : P2(M(young) Us," M(old))
= P2(M(young) us," P2(M(old))
: M(very young) Us,, M(very old)
: M(very Young or verY old)

In other words in this representation the meaning of very (young or old) and of very
young or very old is the same. For a detailed list of properties we refer to Kerre (1993

[10],  leee [11]) .
The main disadvantage of powering modifiers is that they keep the kernel and

the support, i.e. leer(P.(A)) : ker(A) and supp(Po(1)) : supp(A). Hence the
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Fig. 3: a) Powering modifier, shifting modifier, contrast intensifier b) Modifiers
ba"sed on fuzzy relations

representation presented above does not make any distinction between being .4 to
degree I and being very A to degree 1,. One might feel however that a person of 80
years is old to degree 1 but very old only to a lower degree (e.g. 0.7), but this can not
be modelled by means of powering modifiers (or pure modifaction in general). The
same process also causes an increase in the slope of P2(,4) while psycholinguistic
experiments showed that the slopes of t1 and very t1 should be approximately equal
(Hersh, 1976 [9]). We believe these intuitive shortcomings are due to the fact that
powering modifiers are only technical tools, lacking inherent meaning. At the end
of this section we will therefore propose another approach.

Contrast intensification effects an increase of the degrees of membership greater
than or equal to 0.5 and a decrea.se of the degrees of membership smaller than 0.5.
To this purpose the operators int6 (Ragade, 1.977 [1fl) and int2 (Zadeh, 1972 [25])
were introduced.

int6(A)(n) : {% ll 1g] I 3:i
int7(A)(x) = S(A(s);g,0.5; 1)

Combined with powering modifiers they are used to model slightly, namely (Zadeh,
rs72 [25]):

M(slightly tt) = intz(M(plus f1 and not very t1))

in which M(plus tt) : h.zs(M(t1)) and the rest is modelled as explained above.
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4.3.2 Premodification

Let A and B be firzzy sets on lR. and c in IR For a € lR, the shifting modifier So is
defined by S"(,a)(r) : A(n-a) (Lakoff, 1973 [13], Hellendoorn, 1990 [8], Bouchon-
Meunier, 1993 [2]). Shifting modifiers are not in general restrictive of expansive.
However the following properties do hold (Kerre, 1993 [10]):

l. If A is increasing and a ) 0 then S"(A) ç A
2. 11 Ais increasing and o ( 0 then A ç Sa(A)
3. If A is decreasing and a ( 0 then S"(A) ç A
4.lf A is decreasing and o ) 0 then Aç S"(A)

Hence for p a suitable positive number, for increasing membership functions we can
use ,9, to model very and S-o to model more or less, while for decrea.sing membership
functions just the opposite. Figure 3a shows the application of 55 to old, generating
very old. These representations respect simila.r properties w.r.t. complement, inter-
section and union a.s the powering modifiers (see Kerre (1993 [10])) and they comply
better with experimental results (Hersh, 1976 [9]). However when the membership
function of a term t1 is partly increasing and partly decrea.sing (e.9. about 5 o'clock)
there is no straightforward way to model more or less t1 by means of shifting modi-
fiers. F\rrthermore these modifiers can only be used on numerical universes because
of the need for a shifting operation.

In (Novrik, 1992 [15]) a combination of pre- and postmodification is proposed. While
this approach more or less helps to overcome some of the above mentioned short-
comings, its application tends to be complicated and very dependent on the kind of
membership function of the original term.

4.3.3 F\rzzy modifiers based on fizzy relations

Although already useful, the above mentioned fuzzy modifiers have important short-
comings, which a^re in our opinion due to the fact that they are designed simply to
perform a technical transformation, but have no further meaning of their own. Re-
cently two new approaches were developed in which the representation of linguistic
modifiers is endowed with an inherent semantics: the so-called horizon approach
(Novâk, 1999 [16]), and the framework of fizzy modifiers based on fuzzy relations
(De Cock, 2000 [4]). In this section we will discuss the latter. The strength of this
approach is that in determiniug the degree to which y is very t1 the context is taken
into account, namely the fuzzy set of all objects resembling to y. Resemblance is
modelled by means of a fuzzy relation.

Definition LL Frtzzy rel,ation A fuzzy relati,on R on U i,s a fuzzy set on U x U.
For y in U the R-foreset of y is the fuzzy set Ry onU def,ned by @ù(r) : R(x,y).
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If ,E is a resemblance relation on U, i.e. E is a fuzzy relation on u such that for all r
and y in U, E(r,y) is the degree to which r and y resemble to each other, then .Ey
is the fuzzy set ofobjects resembling to g. The general idea is that an object g can
be called more or less tr if it resembles to an object that can be called tr. Likewise
an object y can be called very t1 if every object it resembles to ca,n be called tr. In
the first case we need to represent the intersection of Ey and M(t1) for which we
will use a t-norm. In the second ca,se we have to study the iuclusion of Ey in M(tr);
to this end we will need another tool from fuzzy lo$c, namely implication.

Definition 12 Implication An implicationX is a [0, 1], - [0,L]-mapping wùth de-
creasing first partiol mappingsl(.,r) and increasing sæond partial mappingsl(r,.)
thot satisfies T(l,r) : t, lor aII x i,n [0,1].

Definition 13 For A and B two fuzzy sets onU the degree of inclusion andtbe
degree of overlap are d,efined, by:

lNcL(.A, B) = inf r(A(r), B(x)) ovERL(.A, 
") 

: 
::3 

T(A(r), B(x))

Using these notions the following representation can be constructed:

M(more or less ttXy) : OVERL(Ey, M(tt))

M(very tt)(y) : INCL(.$y, M(t))

These representations coincide with the direct and the superdirect image (Kerre,
1993 [10]) of M(t1) under .8, i.e.

M(more or less t): E(M(tr)) and M(very t): E>(M(tù)

These images respect all kinds of mathematical properties (De Cock, 2000 [b]) whidr
can be interpreted for linguistic terms (De Cock, 2000 [6]). Figure 3b depicts the ap
plication to old of modifiers based on the resemblance relation E defined by E(n,y) :
min(7,mar(0,2.5-0.5.1r-yl)) ,  using the impl icat ion Ir , (x,V):min(! , I -r1-V)
and the t-norm fl. Note that the kernel and the support are changed, which makes
these modifiers intuitively more correct than the powering modifiers. In the same
figure it is shown that these rnodifiers can also be applied in the same way to a
Il-function like B: II(.;42,47,53,58) modelling about 50, which was not possible
for shifting modifiers. In (De Cock, 2000 [3]) a similar framework is presented for
the representation of at least f1 and at most t1 by means of ordering relations.
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