
Paraconsistent Annotated Logic Programming -
Paralog

Jair Minoro Abe
Department of Informatics, ICET - Paulista University

R. Dr. Bacelar,1212
04026-002 Sâo Paulo - SP - BRAZIL

and
Institute For Advanced Studies, Univenity of Sâo Paulo

Av. Prof. Luciano Gualberto, Travessa J,374, Térreo, Cidade Universitrâria,
05508-900 Sâo Paulo - SP - BRAZIL

e-mail: jmabe@uol.com.br

' Kazumi Nakamatsu
School of Humanities for Environment Policy and Technology

Himeji Institute of Technology
Shinzaike 1 -l -12, Himej i

670-0092 JAPAN
e-mail : nakamatu@hept.himeji-tech.ac jp

Brâulio Coelho Âvila
LASIN- PPGIA

PUC-PR - Pontifical Catholic University of Paranâ
R. Imaculada Conceiçâo, 1155

80215-901 Curitiba - PR - Brazil
e-mail : avila@ppgia.pucpr.br

Abstrect

Inconsistency is a natural phenomenon arising from the description of the real world.
This phenomenon may be encountered in several situations. Nevertheless, human beings
are capable of reasoning adequately. The automation of such reasoning requires the
development of formal theories. Paraconsistent Logic provides tools to reason about
inconsistencies. Though inconsistency is an increasingly common phenomenon in
programming environments it cannot be handled, at least directly, by Classical logic, on
.which most of the current logic programming languages are based. Thus, one has to
resort to altematives to classical logic; it is therefore necessary to search for
progtamming languages based on such alternatives. Paraconsistent logic, despite having
been initially developed from the purely theoretical standpoint, found in rec€nt years

'extremely fertile applications in Computer Science, thus solving the problem of
justifring such logic systems from the practical standpoint. This work proposes a

Intcrnational Journal of Computing Anticipaûory Systems, Volume 6 2000
Ediæd by D. lU. DuborS CIIAOS, Liègc, Bclgium, ISSN lS7}6/'ll ISBN 2-96lxll79-8{

variation of the logic programming language Prolog that allows inconsistency to be
handled directly. The proposed language was dubbed Paralog.

Key words: paraconsistent logic programming, non-classical logics and programming,
inconsistency and logic programming, inconsistency and Prolog, paraconsistent logic
and Computer Science.

I Introduction

The employment of logic systems allowing reasoning about inconsistent information is
an €rea of growing importance in Computer Science, Data Base Theory and Artificial
Intelligence. For instance, if a knowledge engineer is designing a knowledge base KB,
related to a domain D,he may consult z experts in that domain. For each expert ei, | 3 i
< n, of domain D, he will obtain some information and will present it in some logic such
as a set of sentences KBi, for I < i < n. A simple way of combining the knowledge
amassed from all exp€rts in a single knowledge base KB is

ra -
\lxa,

However, certain KBi and KBl bases may contain conflicting propositions, p and -p. In
such case, p might be a logic consequence of KBi, while -p might be a logic
consequence of KBi. Therefore, KB is inconsistent and consequently meaningless,
because of the lack of models. However, the knowledge base KB it not a useless set of
information.

There are some arguments favoring this standpoint, as follows:
o certain subsets KB may be inconsistent and express significant information. Such

information cannot be disregarded;
o the disagreement among specialists in a given domain may be significant. For

instance, if physician M1 concludes patient X suffers from a fatal cancer, while
physician M concludes that same patient suffers from cancer, but a benign one, the
patient will probably want to know the causes of such disagleement. This
disagreement is significant because it may lead patient X to .take appropriate
decisions - for instance, to get the opinion ofa third physician.

The reasoning for the last item is that it is not always advisable to find ways to exclude
formulas identified as causing inconsistency(ies) in KB, because many times important
information may be removed. [n such cases, the very existence of inconsistency is
important.

The first efforts to handle inconsistent logic systems were developed by Russian
logician Nikolai A. Vasil'ev and by Polish logician Jan Lukasiewicz. Both published
independent works in l9l0 on the possibility of a logic that would not eliminate

52

contradictions ab initio. These works, however, clung to traditional Aristotelian logic in
what concerned paraconsistency. Only in 1948 and 1954 Polish logician S. Jas'kowski
and Brazilian logician Newton C. A. da Cost4 respectively, built up Paraconsistent
logic [], U6l, [18], independently.

2 Paraconsistent logics

In this paragraph we establish some terminologies.

Let T be a theory whose underlying .logic is L. T is inconsistent when it contains
theorems of the form A nd 4 (the negation of l). If Z is not inconsistent, it is called
consistenî. I is said to æ trivial if all formulas of Z are also theorems of 7. Otherwise, 7
is called non-trivial. So, in trivial theories, the extensions of the concepts of formula and
theorem coincide. When I is the Classical Logic (or several other ones, such as
lntuitionistic togc), a theory is trivial iffit is inconsistent. A paraconsistent logic is a
logic that can be used as the basis for inconsistent but non+rivial theories. A theory is
called paraconsistent if its underlying logic is a paraconsistent logic.

As a consequence, paraconsistent theories do not satisfu the principle of non-
contradiction which can be stated as follows: from two contradictory propositions (i.e.,
one is the negation of the other) one must be false.

3 Paraconsistent Annotated Evidential Logic Programming

The use of annotatd formulas in logic programming was introduced by Subrahmanian
and by Blair in p7l and [13]. Very sigrificant applications were made subsequently in
AI, as well as in Computer Science (some references are [1U, [21J, [22I, [231, [2al). So
a number of authors dedicate to study these systems a from foundational point of view:
NC.A da Costa" V.S. SubrahmaniarL J.M Abe, S. Akama, among others (see, for
instance, [], [2], [3], [5], [8], [9], [0], [18]). These logics have proved to be powerful
tool to deal with inconsistencies and paracompleteness in a non-trivial m€ùnner (by far
the most detailed presentation appean in Abe's [1] thesis). It is to observed that such
concepts are more and more common in several contexts in AI, Robotics, and other
fields of applications. These papers showed it is possible dud convenient to associate
annotations to Horn clauses.

The use of evidential reasoning in logic programming was proposed by Subrahmanian
in [28], [14]. For that effect, Subrahmanian proposes an infinitely valued paraconsistent
logic, inwhichthetruth-valuesaremembersofthelatt icet:{ . reAl0<x3l}x{-re
frl 0 < -r < 1) (with usual product ordering).

This lafiice possesses a minimum element [0, 0] and a maximum element [, 1]. The
minimum element corresponds to indefinite - underdetermined - and the maximum
element corresponds to inconsisænt - overdetermined. Intuitively, [, 0] and [0, l]
correspond, respectively, to true and false in bi-valued logic. The annotations of this

53

logic system may be considered as points in a uniary square on the Cartesian plane. Let
(r,.y) be a point ofthe unitary Cartesian square.

Thus, ap atom is considered perfectly defined when belonging to the line x + y - | :0;

ap atom is considered overdefined when belongingto the line.r + y - l:0;and,ap
atom is considered underdefined when positioned down line r + y - l: 0. The degree of
inconsistency of atom p is (,r + y - l).100, where x +' ! à l. The degree of
indetermination of atom p is (x + y - I). 100, where r + y < L

4 The Paralog Logic Programming Language

In several events in the real world evidences 126l play a fundamental role in decision-
making. Most human decision-making is based on previous experiences. Therefore, an
individual, when faced with decision-making and imprecise informatiotl considers all
possibilities - investigates all evidences - and finally decides on the course ofaction to
be taken.

For instance, if the following evidences exist: less than l0o/o of animals can flg more
than90% of birds can fly; generally all birds are animals; Tweety is a bir{, it is intuitive
to represent the proposition /ess thsn 10o/o of of onimals canfly as:

fly(l) : 0.1 - animal(X) : 1.0
But how to represent tllat over 90oÀ of animals cannotfly?

In this example, the answer to the following query: Can Tweety fly ?, may not be so
simple and may lead to erroneors conclusions.

The Paralog language, using the rmnotation concept, may relate just one evidence to
propositionp. However, it has been shown that the use of two evidences related to the
same proposition p may increase its expression power. Such trro-evidence annotation
may be thought of as one evidence favoring p and one evidence opposed to p. No
restriction is applied to these evidences excepting that they be within the interval {x e
: E l 0 s " r < 1) .

In the previous example, the same proposition could be represented in Paralog as
follows:

flAy): [0.1,0.9] - animal(X): [l.0,0.0]
thereby allowing an increase in the expression power of that propositiorl leading to
proper conclusions. That is, the answer to the previous query must state that there is an
80% inconsistency for the fact that Tweety can fly.

The Paralog language is based on a non-classical - annotated (evidential) paraconsistent
- logic that renders the use of nonJogic extensions unnecessary. The semantics of a
Paralog program is based on the semantics on Herbrand's minimal model. The new

54

resources introduced by Paralog are therefore application-independent and based on lst
order annotated logic, complete and sound in relation to the semantics employed.

5 Syntax of Paralog

The implementation of Paralog is based in Edimburgh's syntax, plus new syntax
elements related to Evidential lngic Programming [28].

Definition 5.1 (Alphabet) The basic Paralog alphabet possesses the same set of symbols
of the standard Prolog, plus the symbol ":" and the evidential symbol. Paralog symbols
are:
1. letters: a, b, ... , :, A, B, ... , Z
2 . d i g i t s : 0 , 1 , . . . , 9
3. special symbols: _,*,-,1,* andthe space
4. punctuation marks: (,),. :',"
5. connective symbols: & (conjunction), <-- (implication), not (negation)
6. annotation symbol: ":"
7. annotation symbolr: [p,, pz]
8. evidential constânt: pr, pl

Definition 5.2 (Expression) A Paralog expression is any finite sequence of its alphabet
symbols.

Definition 5.3 (Atom) A Paralog atom is'.
l. every expression made up of letters and digits, starting with a minuscule;
2. an expression made up of digits, having at most an occurrence of the symbol ".";
3. every expression - including a space - delimited by quotation marks.

Definition 5.4 (Constant) A Paralog constant is defined as:
l. an atom; or
2. an element of the lattice r called evidential constant.

Definition 5.5 (Variable) A Paralog variable is defined as:
I . an expression of letters dud digits the first element of which is a capital letter, or
2. the symbol "_", called anonymous variable.

Definition 5.6 (Term) A Paralog term is inductively defined as:
l. a variable is a term;
2. a constant is a term;
3. if fis an atom and/has the role of a functional n-ary symbol and ty. . . , tnare terms,

thenfr1,. . ., fo) is aterm; and

I The lattice used is defined in paragraph 3

)J

4. a Paralog e expression is a term if and only if it is obtained by applying one of the
foregoing- I to3 -conditions.

Definition 5.7 (Atomic Formula) An evidential atomicformula is the expression of form

i l t r , . . . , t o) : [p r , F z] , f o r n > 0 , w h e r e t v . . . , / n a r e t e r m s a n d p i s a u a t o m i n t h e r o l e o f
a predicaæ n-ary symbol. For simplification purposes, when n:0, d):[p1, p2], may tle
written asp:[p1, p2].

Thus, an atom may simultaneously play the role of one or more functional symbols or
predicates of different arities. This multiple use of the same atom does not result in
ambiguity since the context of a program always points out the role that it represents.

Definition 5.8 (Evidential Clause) The set of Paralog evidential clauses if inductively
defined as:
l. iî p is an evidential atomic formula, then p is an evidential clause, called unitary
evidential clause;
2. if p: [p, v], and r71 [p1, vrl,. . . , 4n [Fn, vn], are evidential atomic formulas, then the
expression

p: [p, ir] <- qr [pr, vr],. . . , qn hrn, vnl,
is an evidential clause, called non-unitary evidential clause, where p: [p, vJ is the head
and

q t fltt, vr],. . ., t/" ftt", vn),
is the body ofthe clause;
3. if pt [pr, vt],. . . , pnfltn, vnj,
are evidential atomic formulas. then

< -pr hrr, vr],. . . ,po [F , vo],
is an evidential clause, called objective clause;
4. a Paralog expression is a clause if and only if it is obtained by applying one of the
foregoing - I to 3 - conditions.

Definition 5.9 (Paralog Program) AParalogprogram is a finite non-empty set of unitary
and non-unitary evidential clauses.

A Paralog program is presented below showing the example of Tweety bird proposed
on section 4. This example has been adapted from Ng & Subrahmanian's work [25].

Example 5.1 A Paralog program on Tweety bird
f l i e s (X) : [0 . 1 , 0 . 9]

a n i m a l (X) : [1 . 0 , 0 . 0] .
f l i e s (X) : [0 . 9 , 0 . 1]

b j . r d (x) : [1 . 0 , 0 . 0] .
a n i m a l (x) : [1 . 0 , 0 . 0]

b i r d (X) : [1 . 0 , 0 . 0] .
b i r d (t w e e t y) : [1 . 0 , 0 . 0] .

56

In this example, the fact that Tweety is a bird is represented as:
b i r d (t w e e t y) : [1 . 0 , 0 . 0] .

This clause may be read as: "It is known, with absolute favorable evidence and with no
contrary evidence that Tweety is a bird". It may be seen that in this clause Tweety is
written is small letters. This is necessary because of the Paralog language syntax. That
is, the use of a name starting with a capital letter indicates the intention of defining a
variable - for instance, a variable called Tweety - and not an atom.

Definition 5.10 The definition of Paralog language in Backus-Naur Form (BI.IF)
notation is presented below:
< program >: : -<clatne>< retnaining program >
Slause>: 1 -<fact > .l < rule > .
< remaining_ltrogram >'. : :<clause>)@z
< foct >: : -'=<atom>: <annotation> | <atom> (< argument >)'. <annotat ion>
< rule >: ::<head> <-- < body >
<heaù>::--<fact>
< body >: : --<fact > | <fact >< rernoining body >
< remaining body >: : : & <foct >)& <fact x remaining body >)A
< argument >: : :<otom>< remaining_arg> | <variable>< remaining arg>
< remaining_arg)t i :, (argument >), < argument x. remaining arg>) A
<atom>: : :<small_ letter>< n letters >
<variable>: 1 --'<capital

_ letter- n_letters >
< n_letters >: : :<rutmber>< n_letters > | < Ietter >< n_letters >) A
< letter >; : --<smoll_ Ietter>) <capital_letter>
<annotation>: : : [< awtotational constant],l annotational constant >l
<etmotational constant>: : : 0. <numberxnumber> | l-OO
<number>:'.:6 | t I zlzlql s lo I z I s I s
<smau tetter>'.: :al nl " l al " lr l ela I i l i I t l t l * l " l ol pl s | . I ' I r I , I u |, l ' l v I '
<capint _tett er>:.:A I n I c I ol tI r I c I' n I r I t I x I L I u I w I o I p I g I nl s I r l'u I v I
wlx l r f z

It may be observed that the definition of the non-terminal symbol <annotation> is
related to Jhe lauice r adopted for this implementation. It is enough to redefine this non-
terminal symbol to use other lattices.

Thus, a query to Paralog may be structured in BNF as:
< goal >: ::<fact x. remoining goal > .
< remaininggoal >: '.: & <fact > l& <fact >< remaining goal >)@

6 Semantics of Paralog

' This represents the empty expression

57

6.1 Declarative and Procedural Semantics

Similarly to a standard Prolog program, a P0 progam and a Qo query must undergo a
regularization process, where :
o ov€ry anonymous variable is replaced by a new distinct variable;
o all atoms occurring in more than one role will be renamed so that at the end of that

process there are no atoms with the same name in different roles.

The Pr program and the Qz query resulting from this regularization process are
equivalent to Po dud Qe respectively. Differently from the standard Prolog, a Paralog
program must also undergo two more syntactic transformations:
l. elimination of the negation; and
2. closure.

These two syntactic transformations are necessary to eliminate the facilities introduced
by the Paralog language that are not part ofthe ELPS syntax.
In the first transformation, progftlm P1 and Qr Querr undergo the negation elimination
process. In this process, all occurrences of not p:fp, v] evidential atomic formulas are
replaced W p: lv, pl equivalent atomic formulas. The elimination of p1 md er negation
results in program Pz and Qz Query.

The last syntactic transformation is the closure, as described in [13], proving that
program CL(P2) resulting from this transformation is logically equivalent to Pz; that is /
is a P2 model if and only if 1is a CL(Pz) model.

Program CL(P2) and query CL(Q, resulting from this syntactic transformation process
are equivalent to Po and Qe in Paralog, respectively. Program cL(P2) is equivalent to a
ELP E and query CL(Qz) is equivalent to a C query, if and only if:

l. a clausep.'[p, v] occurs in CL(P2) if and only if there is a clausep..[p, v] <- in E;
2. a non-unitary Paralog e clausep;[p, v] <- qr [pr, rrl &. . .& qo [F", vJ, occurs in
cL(P2) if and only if there is a clausep.'[[r, v] <- qr :[Fr, vt] &. . . & qo:flr^,v"1 in E;
3. CL(Q2) is in form <-- Cr :[pr, vr] &. . .& Cn:[p", vJ, if dud only if C is in form Cr
:[pr, vr] &,. . . &. G:[u,, vJ.

At the end of these syntactic transformations, the resulting progam and query can be
handled as well-behaved ELPS, where resolution-SlDe t2Sl can be applied.

6.2 Operational Semantics

Paralog inference engine offers an operational semantics for the implemented language;
its execution is based on the resolution-SlDe method.

58

In this inference engine the selection function f maps target C1 [pr, vr] & . . . &. C-" [pr,
v.J, in literal Ci :[pi, vi] where [p;, vJ : sup{:[pr, vr], ... , [po, v"]]. However, the
selection function/employed by the Paralog inference engine is not the same standard
selection function described in [20].

Also, the procedure to select the program clauses does not follow standard strategy. In
this inference engine progam clauses are selected so that the selected clause C:[p, v]
has evidence [p, v] equal to the supreme of the set formed by the candidate clauses
evidences.

These two selection strategies cause the inference engine refutation procedure to
simulate a search similar to the best-first search in the program clauses CL(P2)
refutation tree.

Thus, given a progmm P and a query Q, the Paralog e inference engine provides as an
answer an evidence [p, v], as previously described in this section, so that [p, v] e r. In
the cases in which [p, v] * [0, 0], the answer also includes a replacement O for the
variables of Q.

The following example shows a Paralog program and a query in the form of p(b) : [.0,
0.01

Example 6.1 A Paralog progmm
P \ 4 , /

P \ . ^ - '

! t a , /

q (a)

[1 . 0 , 0 . 0] .
[1 . 0 , 0 . 0]

q (x) : [0 . 0 , 1 . 0] &
r (x) : [1 . 0 , 0 . 0] .

[1 . 0 , 0 . 0] .
[1 . 0 , 0 . 0] .
[0 . 0 , 1 . 0] .
[0 . 0 ,] _ . 0 1 .

In this example, the Paralog inference engine provides an evidence [.0,0.0] for an
answer. That means that the ans\iler obtained is perfectly defined.

7 Programming in Paralog

The development of computationally efïicient programs in Paralog must exploit two
aspects in this language:
1. the declarative aspect that describes the iogic structure of the problem, and
2. the procedural aspect that describes how the computer solves the problern.

59

However, it is not always an easy task to conciliate both aspects. Therefore, programs to
be implemented in Paralog should be well defined to evidence both the declarative
aspect and the procedural aspect ofthe language.

It must be pointed out that progrums in Paralog, like programs in standard Prolog, may
be easily understood or reduced - when well defined - by means of addition or
elimination of clauses, respectively.

A small knowledge base in the domain of Medicine is presented as a Paralog program.
The development of this small knowledge base was subsidized by the information
provided by three experts in Medicine. The first two specialists - clinicians - provided
six' diagnosis rules for two diseases: diseasel and disease2. The last specialist - a
pathologist - provided information on four symptoms: symptoml, symptom2,
symptom3 and symptom4. This example was adapted from da Costa and
Subrahmanian's work [6].

Example 7.1 A small knowledge base in Medicine implemented in Paralog
d r Q ô a c ô | I Y I . I Iu f o s o o ç r \ / \ / . L f . V t V . V l

q r m n J - n m l l l . ' \ .

[1 . 0 , 0 . 0] &
e r m n f n m ? / Y \ .

1 1 ô n n]
L a . v r v . v l

d i s e a s e 2 (X) : [1 . 0 , 0 . 0]

q \ m n f ô m 1 (Y \ .

T 1 ^ ^ ^ l .
I r . v r v . v l q

q r m n f n m ? 1 Y \ .

d i s e a s e l (X) : [1 . 0 , 0 . 0] .
d j - s e a s e l (X) : 1 1 . 0 , 0 . 0 1
s y r n p t o m l (X) : [1 . 0 , 0 . 0] &
s y m p t o m 4 (X) : [1 . 0 , 0 . 0]
d i s e a s e 2 (X) : [1 . 0 , 0 . 0]
s y m p t o m l (X) : [0 . 0 , 1 . 0]
s y m p t o m 3 (X) : [1 . 0 , 0 . 0]

[1 . 0 , 0 . 0]
d i s e a s e l (X) :

d i s e a s e 2 (X) :
d i s e a s e 2 (X) :

[0 . 0 , 1 . 0]

[1 . 0 , 0 . 0]
[0 . 0 , 1 . 0]

&

s y m p t o m l (j o h n) : [1 . 0 , 0 . 0] .
s y m p t o m l (b i 1 1) : [0 . 0 , 1 . 0] .
s y r n p t o m 2 (j o h n) : [0 . 0 , 1 . 0] .
s y m p t o m 2 (b i]]) : [0 . 0 , 1 . 0] .
s y m p - u o m 3 (j o h n) : [1 . 0 , 0 . 0] .
s y m p t o m 3 (b i 1 1) : [1 . 0 , 0 . 0] .
s y m p t o m 4 (j o h n) : [1 . 0 , 0 . 0] ,
s y m p t o m 4 (b i 1 1) : [0 . 0 , 1 . 0] .

In this example, several types of queries can be performed. Table I below shows some
query ffis, the evidences provided as answers by the Paralog inference engine and
their respective meaning.

The knowledge base implemented in Example 7.1 may also be implemented in standard
Prolog, as shown in Example 7.2.

3 The first four diagnosis rules were supplied by the first expert clinician and the two remaining diagnosis
rules were provided by the second expert clinician.

60

Item
I

t -

i

Table I Query and answer forms in Paralog

Example 7.2 Knowledge base of Example 7.1 implemented in standard Prolog
diseasel(X):-
sympoml(X),
sympom2(X).
disease2(X):-
symptoml(X),
symptom3(X).
diseasel (X):-
not disease2(X).
disease2(X):-
not diseasel(X).

diseasel(X):-
symptoml(X),
symptom4(X).
disease2(X):-
not symptoml(X),
symptom3(X).
symptoml(ohn).
symptom3(john).
sympûom3(bill).
symptom4fiohn)

In this example, several types of queries can be performed as well. Table 2 shows some
query types provided as answers by the standard Prolog and their respective meaning.

Item Query and answer form Meanins

I Query Diseaselftill Does Bill have disease 1 ?
Answer Loop System enters into an infinite loop

2 Query Disease2(bill) Does Bill have disease 2 ?
Answer Loon' Svstem enters into an infinite loop

a) Querv Diseasel(iohn) Does John have disease I ?
Answer Yês John hæ diseasel

4 Ouery Disease2(iohn) Does John have disease 2 ?
Answer Yes John has disease2

5 Query Diseasel(bob) Does Bob have disease t ?
Answer No Bob does not have diseasel

Teble 2 Query and answer forms in standard Prolog

Ouerv and answer form Meanine
Query Disease I 6ill): t 1.0. 0.01 Does Bill have disease I ?
Evidence t0.0.0.01 The information on Bill's diseasel is unknown
Query Disease2(bill):[1.0, 0.0] Does Bill have disease 2 ?
Evidence n.0.0.01 Bill has disease2
Query Disease l(iohn):[1.0, 0.0] Does John have disease I ?
Evidence 1.0. 1 .01 The information on John's diseasel is inconsistent
Ouery Disease2(iohn): t 1.0- 0.01 Does John have disease 2 ?
Evidence 1.0. t.0t The information on John's disease2 is inconsistent
Ouery Disease I (bob): t 1.0. 0.01 Does Bob have disease I ?
Evidence I0.0- 0.0.| The information on Bob's diseasel is unknown

6l

Starting from Examples 7.1 and 7.2 it can be seen that there are different characteristics
between implementing and consulting in Paralog and standard Prolog. Among these
characteristics, the most important are:
L the semantic characæristic; and
2. the execution control characteristic.

The first characteristic may be intuitively observed when the program codes in
Examples 7.land7.2 are placed side by side. That is, when compared to Paralog, the
standard Prolog representation causes loss of semantic information on facts and rules.
This is due to the fact that standard Prolog cannot directly represent the rngation of
facts and rules.

In Example 7.1, Paralog progmm presents a four-valued evidence representation.
However, the information loss may be greilter for a standard Prolog progmm, if the facts
and rules of Paralog use the intermediate eyidence of lattice r: {r e Al0 S -r 3 1}x{-r
e Al 0 < .r S I). This last characteristic may be observed in Tables I arlrd, 2. These two
tables show five queries and answers, presented and obtained both in Paralog and
standard Prolog program.

The answers obtained from the two approaches present major differences. That is, to the
first query: "Does Bill have diseasel?", Paralog answers that the information on Bill's
diseasel is unknown, while the standard Prolog enters into a loop. This happens because
the standard Prolog inference engine depends on the ordination of facts and rules ûo
reach deductions. This, for standard Prolog to be able to deduct an answer similar to
Paralog, the facts and rules in Example 7.2 should be reordered On the other hand" as
the Paralog inference engrne does not depend on reordering facts and rules, such
reordering becomes unnecessary.

In the second query: "Does Bill have disease2?", Paralog answers that 'Bill has
disease2", while the standard Prolog enters into a loop. This happens for the same
reasons explained in the foregoing item.

In the third query: "Does John have diseasel?", Paralog answers that the information on
John's diseasel is inconsistenÇ while the standard Prolog answers that 'John has
diseasel". This happens because the standard Prolog inference engine, after reaching the
conclusion that 'John has diseasel" does not check whether there are other conclusions
leading to a contraction. On the other hand, Paralog performs such check, leading to
more appropriate conclusions.

In the fourth query: "Does John have disease2?", Paralog answers that the information
on John's disease2 is inconsistent, while the standard Prolog answers that 'John has
disease2". This happens for the same reasons explained in the foregoing item.

62

In the last query: "Does Bob have diseasel", Paralog e answers that the information on
Bob's diseasel is unknown, while the standard Prolog answers that "Bob does not have
diseasel". This happens because the standard Prolog inference engine does not
distinguish the two possible interpretations for the answer not. On the other hand, the
Paralog inference engine, being based on an infinitely valued paraconsistent evidential
logic, allows the distinction to be made.

In view of the above, it is demonstrated that the use of the Paralog language may handle
several Computer Science questions more naturally.

I Conclusions

Inconsistency is a natural phenomenon arising from the description of the real world.
This phenomenon may be encountered in several situetions. Nevertheless, human beings
are capable of reasoning adequately. The automation of such reasoning requires the
development of formal theories. Paraconsistent Logic, despite having been initially
developed from the purely theoretical standy point, found in recent years extremely
fertile applications in Computer Science [11], [21], [22],[23], [24] thus solving the
problem ofjustifying such logic systems from the practical standpoint.

Languages such as Paralog, capable of merging Classical Logic Programming concepts
with those of inconsistency, widen the scope of Logic Programming applications in
environments presenting confl icting beliefs and contradictory information.

Acknowledgements. The authors would like to thank the anonymous referees for the
many helpful comments and suggestions provided. The first author is supported by
FAPESP gltant 97 102328-9.

References

[] Abe, .J.M., Fundamentos da Lôgica Anotada (Foundations of Annotated Logics),
Ph.D. Thesis, Universidade de Sâo Paulo, Sâo Paulo, Brazil,1992 (in Portuguese).
[2] Abe, J.M., On Annotated Model Theory, Coleçdo Documentos, Série: Lôgica e
Teoria da Ciência n" 1 l, Instituto de Estudos Avançados, University of Sâo Paulo, Sâo
Paulo, Brazil, June, 1993.
[3] Abe, J.M., On Annotated Modal Logics, Mathematica Juponica,40, n" 3, 553-560,
1994.
[a] Abe, J.M., J.P.A. Prado & B.C. Âvila, On a class of paraconsistent multimodal
systems for reasoning, Coleçdo Documentos, Série Lôgica e Teoria da Ciência,[Efu-
USP, n"24, 12p,1997.
[5] Abe, J.M. & S. Akama, Annotated logics @ and ultraproducts, to appear in Logique
et Analyse,1999.
[6] Abe, J.M., Curry algebras Pr, to appear in Logique et Analyse,1999.

63

[7] Abe, J.M. & S. Akama, A Logical System for Reasoning with Fuzziness and
Inconsistencies, Proceedings of the IASTED International Conference on Artificial
Intelligence and Soft Computing (ASC'99), August 9-12, Honolulu, Hawaii, USA,22l-
225,1999.
[8] Akama, S. & J.M. Abe, Natural Deduction And General Annotated Logics,
Proceedings, The First International l{orkshop on Labeled Deduction (LD'98),
Freiburg, Germany, l-14, 1998.
[9] Akama, S. & J.M. Abe, Many-valued and annotated modal logics, IEEE 1998
International Symposium on Multiple-Valued Logic (ISMVL'98), Proceedinç, pp. 114-
119, Fukuoka, Japan, 1998.
[10] Abe, J.M., S. Akama & R. Sylvan, General annotated logics, with an introduction
to full accounting logic, Coleçdo Documentos, Série Lôgica e Teoria da Ciência, IEA-
USP, n" 39,17p.,1998.
[l] Avila, 8.C., An Evidential Logic-Based Paraconsistent Approach to Handle
Exceptions in Multiple Inherilqnce Frame Systems, Ph.D. Thesis, University of Sâo
Paulo, Sâo Paulo, Brazil,1996,133 p., (in Portuguese).
[2] Belnap, N.D., I Useful Four- Vulued Logic, in G. Epstein dud J.M. Dunn, eds.
Modem Uses of Many-Valued Logic (D. Reidel, 1979), pp. 8-37.
[13] Blair, H.A. & Subrahmanian, V.S., Paraconsistent Logic Programming, Proc. 7ù
Conference on Founciations of Software Technology and Theoretical Computer Science,
Leeture Notes in Computer Science, Springer-Verlag, Vol. 287,pp.340-360,1987.
[4] Blair, H.A. & Subrahmanian, V.S., Paraconsistent Foundations for Logic
Programming,Journal of Non-Clussicul Logic,5,2, pp. 45-73, 1988.
[5] Clocksin, W.F.; Mellish, C.5., Programming in Prolog (3rd Ed.), Springer-Verlag,
1987.
[6] da Costa, N.C.A. & Subrahmanian, V.S., Paraconsistent Logics as a Formalism for
Reasoning About Inconsistent Knowledge Bases, Arttficrul Intelligence in Medicine I,
pp. 167-174, Burgverlag Tecklenburg, West Germany, 1989.
[l7] da Costa, N.C.A.; Henschen, L.J.; Lu, .J..J. & Subrahmanian, V.S., Automatic
Theorem Proving in Paraconsistent Logics: Theory and Implementation, Proc. l0'n
International Conference on Automated Deduction, Lecture Notes in Clomputer Science,
Vol. 449, pp. 72-86, 1990.
It8] da Costa, N.C.A.; Abe, J.M. & Subrahmanian, V.S., Remarks on Annotated Logic,
Zeitschrift fur Mathematische Logik und Grundlagen der MathemarrÉ, Vot. 37, pp. 561-
570,199t.
[9] Fitting, M.C., A Kripke-Kleene Semantics for Logic Programming J. of l.ogic
Prog. 4 (1985), pp. 295-312.
[20] Lloyd, J.W.,Foundations of Logic Programmlng, Springer-Verlag 1984.
[21] Nakamatsu, K., J.M. Abe & A. Suzuki, An approximate reasoning in a framework
of vector annotated logic programming, The Vietnom-Japan Bilateral Symposium on
Fuz:y Systems And Applications, YJFIIZZY' 98, Nguyen H. Phuong & Ario Ohsato
(Eds), Halon g Bay, Vietnam, 521-528, 1998.

&[

[22] Nakamatsu, K. & J.M. Abe, Reasonings Based On Vector Annotated Logic
Programs, Proc. of CMCA'99, Interrutioncl Conference on Computational
Intelligence for Modeling Control and Automation, Edited by M. Mohammadian, IOS
Press - Ohmsha, ISBN 90 5199 474 5 (IOS Press), Netherlands, 396403, 1999 .
[23] Nakamatsu, K., J.M. Abe & A. Suzuki, "Defeasible Reasoning Between
Conflicting Agents Based on VALPSN', American Association for Artificial
Intelligence - AAAI'99 Workshop on Agents'Conflicts, ISBN l-57735-092-8, TR WS-
99-08, AAAI Press - American Association for Artificial Intelligence, Menlo Park,
California, USA\ 2A-27, 1999.
[24] Nakamatsu, K., Y. Flasegawa, J.M: Abe & A. Suzuki, A Framework for Intelligent
Systems Based on Vector Annotated Logic Programs, IPMM'99 The Second
International Conference on Intelligent Processing and Manufacturing of Materials,
ISBN 0-7803-5489-3, Editors: J.A. Meech, M.M. Veiga, M.H. Smith & S.R. LeClair,
IEEE Catalogue Number:99EX296,Librury of Congress Number: 99-61516, Honolulu"
Hawaii, USA, 695-702, 1999.
[25] Ng, R.T. & Subrahmanian, V.S., Relating Dempster-Shafer Theory to Stable
Semantics,Cs-TR-2647,University of Maryland, 1991, 40 pg.
[26] Shafea G., A Mathematical Theory of Evidence, Princeton University Press, 1976.
[27] Subrahmanian, V.S., On the Semantics of Quantitative Logic Programs, Proc. 1
IEEE Synp. On Logic Programming, Computer Society Press, San Francisco, Sep.,
173-182, t987.
[28] Subrahmanian, V.S., Towards a Theory of Evidential Reasoning in Logic
Programming, Logic Colloquiun '87, The European Summer Meeting of the
Association for Symbolic Logic, Granada, Spain, July, 1987.
[29] Sylvan, R. & J.M. Abe, On general annotated logics, with an introduction to firll
accounting logics, Bulletin of Symbolic Logic,2,1l8-l19, 1996.
[30] van Emden, M.H., Quantitative Deduction and its Fixpoint Theory, J- of Logic
Programming 4, l, W. 37 ̂53, 1986.

65

