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Abstract 

Statistically-Independent Component Analysis (ICA) and sparseness-maximization net 
are models which maximally preserve information ("infomax"). Research of relevance 
of these algorithms for modeling image-processing in VI is reported in comparison with 
the Holonomic Brain Theory by Pribram which advocates dendritic processing and its 
connection to quantum processing. "Infomax" models are presented and discussed as a 
possible early-processing gateway to higher visual processing involving quantum 
associative nets (Perus. 2000) and attractor dynamics. 

Keywords: Independent Component Analysis (ICA), quantum associative networks, 
early vision, infomax, sparse coding 

1 Introduction to the Holonomic Theory and Early Image Processing 

Vl. The striate cortex (V 1 ), receiving inputs from retina over lateral geniculate 
nucleus (LGN), serves as the central brain area for image processing, before its outputs 
are projected to higher visual areas (V2, V3, V4, MT, ITC, PPC and others) (e.g., De 
Yoe & Van Essen, 1988; Tootell et al., 1998). The form of VI receptive fields are 
Gabor wavelets which minimize the uncertainty in phase space of space-time and 
spatial and temporal frequencies, and thus maximize information. Gabor wavelets serve 
as "patterns" which interfere in order to realize a Hebbian-like learning process 
incorporating phase-differences. The holonomic brain theory (HBT) by Pribram ( 1991, 
1999) proposes that holography-like image processing and related Gabor transforms are 
implementable in synapto-dendritic and/or quantum substrates. We will try to 
complement HBT with new relevant computational models, based mainly on neural-net~ 
like quantum or field computation, or ICA. 

Holonomic brain theory. Pribrarn's HBT suggests biologically-plausible 
computational mechanisms for a triple convolution process along the visual pathway 
retina - LGN - striate cortex. At each of these three stages, inputs from the previous 
stage are convoluted with the receptive fields of neurons receiving those input at the 
present stage (Pribram & Carlton, 1986). 

At the microscopic level, HBT considers synapto-dendritic networks (where 
synapses and dendrites belong to neurons at the above-mentioned three stages of the 
visual pathway, especially VI) as the most relevant information-processing executive 
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level. So, image processing in V 1 using Gabor wavelets may be implemented by 
interacting dendritic polarization-fields arising from spine-produced oriented electrical 
dipoles. In retina and LGN a similar image pre-processing is done by convoluting 
inputs to a neuron with its "Mexican-hat"-shaped "filter". Later, Vl cells use Gabor 
wavelets as the receptive-field-based "filters". 

HBT postulates quantum-rooted processes realizing conscious perception, not 
merely information dynamics. HBT considers processes at the synapto-dendritic-net 
level more relevant than processes at the usual neural-net level. This is supported by 
physiological experimental evidence (Pribram, 1991 , 1995). Dendritic processes are 
also more flexible, faster, realize a higher rate of connectivity, or interaction, and 
greater parallelism than conventional nerve-signal processing (summation in soma and 
axonal propagation of impulses). Dendritic field processes are, over subcellular 
structures like cytoskeleton, "more directly connected" with quantum holism and unity 
which seems necessary for binding of perceptual features into an experiential whole. 

HBT-compatible models. Neural-net models usually incorporate "amplitude"­
information (quantified using real-valued numbers), but not phase-information (encoded 
in complex-valued variables), because they do not contain wave dynamics. However, 
for successful image processing, it is useful to incorporate phase-information into 
amplitude-correlation (second-order statistics) models like the Hopfield model or 
Principal Component Analysis (PCA). Latter associative memory models use (Hebbian) 
correlation matrices. But there are some modem neural-net-based models which 
successfully process phase-information in addition to amplitude-information and share 
many features with HBT. Such HBT-compatible models are: 
• Independent Component Analysis (ICA) by Bell & Sejnowski (1995, 1996, 1997), 

and a similar sparse-coding model by Olshausen & Field ( l 996a,b; 1997); 
• field computation model by MacLennan (1999; in Pribram, 1993 ; in Wang et al., 

1998) which also uses Gabor wavelets and many physics-inspired techniques; 
• Holographic Neural Technology (HNeT) by Sutherland (1990) and AND Corp. : an 

application-effective neurobiology- and holography-inspired artificial model (in 
other words, simulated holography-based neurocomputation) which was recently 
renamed to Holographic I Quantum Neural Technology, because analogies between 
mathematical models of holography, associative neural networks and quantum fields 
were recently systematically listed and discussed (Gould, Perus in Pylkkanen & 
Pylkko, 1995; Perus, 1996, 1998; Schempp in Pribram, 1993; Marcer & Schempp, 
1998); 

• quantum neurodynamics (QND) by Jibu & Yasue (in Pribram, 1991, 1993), and in 
another (artificial) model by Dawes (in Pribram, 1993); 

• quantum associative network model (QAN) by Perus (2000; in Wang, 1998): a 
quantum information-processing "algorithm", inspired by the associative neural-net 
models of Hopfield and Haken, rewritten to quantum-mathematical formalism. 

The QAN model was presented in Perus (2000) (originally: Perus in Wang et al., 
1998). It is fundamental in the sense of informational physics. To construct QAN from 
Hopfield-like simulated neural nets, the real-valued "neural" variables have been 
translated to analogous quantum complex-valued (phase-information-carrying) variables 
(Peros, 1996, 1997). The translation to quantum formalism was deliberately and 
purposely done in the most "natural" way, i.e. so that the neural-net-like associative 
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information-processing can be implemented in a usual quantum-physical system, and 
hypothetically inside some brain tissues, not necessarily in some artificial quantum­
based device. This characteristic distinguishes the QAN model from all similar 
quantum-computer models (Bonnell & Papini, 1997; Zak & Williams, 1998; Behrman 
et al., Ventura in Wang et al. , 1998; Dawes in Pribram, 1993; Chrisley in Pylkkanen & 
Pylkko, 1995) which are, at least in part, hypothetically-implementable only using some 
artificial devices or procedures. 

The ICA model resembles the receptive fields of so-called simple cells in Vl 
(Bell & Sejnowski, 1997). The " independent components", selected by {CA-filters, are 
localized and oriented, as was also experimentally found for those simple cells which 
were denoted as "edge filters". The unsupervised ICA learning algorithm, based on 
information maximization ("infomax", eh. 2) which is agreement with HBT, provides 
maximal statistical independence of resulting neural states (outputs). This is achieved 
when their probability distribution gets factorized. It is equivalent to getting mutual 
information between the output-states zero. Here is a connection between ICA and 
HBT. since Gabor wavelets realize such optimizing characteristics. Another connection 
is the fact that ICA encodes and exploits the phase-information in addition to the 
amplitude-information. Actually, as ICA simulations show (chs. 3, 4, 5), the amplitude­
information is less necessary for good image recall than the phase-information. This is 
similar to HNeT processing and to findings by MacLennan (in Wang et al., 1998) for 
some Gabor-based field-computation models. In HNeT phases are considered as the 
main output; amplitudes just measure the rate of importance, confidence ( or reliability, 
accuracy, respectively) or urgency of the phase-output. 

Table 1 compares characteristics of chosen models regarding vision research: 

Table 1 H.Ne.T Q.A.N. I.C.A. Field computing 
effecti- very effective effective, very effective a general model 
veness potentially very with potentially 

effective very effective 
"sub-branches" 

biological biol. plausible at biol. plausible at biol. implausible biol. plausible at 
plausibility the fundamental the fundamental mechanism, but the fundamental 

level only level only plausible output 1evel only 
possible indirect, but direct quantum quantum quantum implem. 
quantum formally similar implementation implementation indirect, partially 
substrate to Q.A.N. not vet known direct 
main very applicative fundamentally fits experiments a general model 
strength and developed quantum, on receptive field with a concrete 

"natural" profiles vision sub-model 
main a mixture of limited to assoc. algorithm's biol. ( consciousness 
weakness natural and memory and implementation still missing) 

artificial features pattern recognit. unknown 

Phase-information is necessary for detection of edges of perceived objects, 
because edges are situations where many sine-waves of different frequencies "get in 
phase", i.e. they are all aligned in phase and sum together precisely where the edge lies. 
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Such a coherent constructive interference is not realizable without wavelets. Therefore 
ICA successfully detects edges, but the usual Hebbian amplitude-correlation methods 
(without phase-differences incorporated) do not. ICA gives biologically-plausible 
results (outputs), but its algorithm has not yet been found to be implemented in a 
biologically-plausible way. Our paper presents these issues in detail from a HBT view. 

From ICA to QAN. After ICA-like image pre-processing by early visual 
perception ( eh. 6), object perception seems to be realized by attractor-nets, and 
conscious associative processes seem to be grounded by quantum associative processes 
in a QAN-like system (eh. 7) which are strongly shaped by processes in neural circuits. 

2 Maximal Preservation of Information ("lnfomax") 

From second- to higher-order statistics. ICA is supposed to be important for 
cortical image processing because of taking into acc~unt the statistics of input data 
which is also of higher order than the second order. Correlation and convolution, for 
example, are "learning rules" of second order (i.e':, based on multiplication of two state­
variables). Such mathematical expressions have been named Hebbian (directly or in a 
generalized sense, e.g. the covariance learning rule and PCA). 

Phases needed for edges. Phase-information is needed for successful 
approximation of VI-filters which were found to be localized, oriented and band-pass 
(i.e., selective to structure at different spatial scales). Local angle of orientation is 
described by local phase. Such filters are needed to trace segments of edges which are 
themselves oriented. Experiments show that individual simple cells of VI with their 
specific receptive fields act as such filters, i.e. as selectors or edge-segments by having 
maximal response to specifically oriented stimuli. 

An edge, a notable image-element, manifests specific relationships among many 
pixels being encoded in neurons or receptors, not only two (neighboring) ones. Second­
order statistics (as in PCA) is sensitive only to pair-wise relationships, like correlations 
encoded in the Hebb rule. Higher-order statistics (as in ICA) is sensitive to multi­
neuronal relationships, reflecting multi-pixel gestalt-structures, and thus goes beyond 
the two-pixel (or two-neuron, respectively) relations of PCA. Bell & Sejnowski (1996) 
show that the Hebbian models reflect only the amplitude spectrum of the signal and 
ignore the phase spectrum where most of the relevant local coincidences in natural 
signals take place. An edge in an image is a coincidence in the phase spectrum, since if 
one Fourier-analyses it, one would see many sine-waves of different frequencies , all 
aligned in phase where the edge occurred. If one Fourier-transforms (FT) the image, and 
then performs inverse FT, with (1) amplitude or (2) phase removed, the starting image 
will be reconstructed in case (1) badly, and in case (2) well enough. Phases are thus 
necessary for image processing; "amplitudes ", on the other hand, are usefal but not 
necessary. 

Redundancy reduction. Visual processing also has to be maximally efficient in 
the sense of maximally preserving information by using as little structure as possible. 
So, information has to be optimally condensed, not by reducing quality and relevance, 
but only by reducing quantity (where it is unnecessary), or by eliminating redundancy 
(i.e., double or multiple coding), respectively. This would enable faster processing and 
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decrease the number of errors because of getting trapped into spurious (irrelevant) 
attractors. 

It turns out that an "infomax"-net is realizable if neurons have receptive fields 
shaped like Gabor functions. Computer simulations were done where model-neurons (as 
filters) resembled the Gabor-like receptive-field form which enables "infomax" and 
orientation- or edge-selectivity at the same time. Gabor wavelets (Daugman, 1985) are 
functions which have oriented stripes as seen from above. This means that the response 
of a simple cell with such a receptive field will be the biggest if stimulated by an edge 
with such an orientation. 

Two "infomax" methods. To realize these characteristics of the primary visual 
system, /CA and sparseness-maximization network turned out to be the most successful 
methods. ICA is a new PDP method for searching unknown sources in complex data­
structures, i.e. so-called blind separation into independent components. Starting from 
earlier ICA-models like Comon (l 994), ICA was developed for vision modeling mainly 
by Bell & Sejnowski (1995, 1996, 1997), therefore it will be abbreviated by BS. BS­
network results emphasized statistical independence more than sparseness of coding. 
The second method, that also resembled Gabor-like "infomax" orientation-filters, was 
developed by Olshausen & Field (l 996a,b ), therefore abbreviated by OF. OF-network 
achieved such results by emphasizing sparse coding over information maximization. 
Sparse coding means that information is encoded by- a small minority of neurons in a 
net. These coding neurons are active ("non-zero") only, while all others are passive 
("zero") in the end, although they also participate during the process oflearning. 

BS and OF demonstrate how their phase-based methods transcend the 
limitations of PCA and Hebbian learning where neuronal configuration converges 
toward a basis of pattern-vectors (attractors) that are mutually orthogonal. Pairs of PCA 
output-patterns are therefore decorrelated ("have nothing in common"), but are not 
statistically independent, because the structure of input-data is usually not mutually 
orthogonal, especially not in natural scenes (Harpur & Prager, 1996). 

Statistically-independent coding (ICA). Statistical independence is more than 
just decorrelation which ensures that stored images do not disturb each other when 
recalled, and that they can be selectively recognized in novel, similar circumstances. 
Decorrelation, achieved by PCA, is not sufficient in the case of natural-scene images 
which are rarely orthogonal. As numerous computer simulations of ours and of other 
modelers have shown, Hebbian nets and PCA still have some success in quasi­
orthogonal cases, but in non-orthogonal cases they generally fail much earlier than ICA. 
Such cases also usually demand non-linear processing, like with edge problem. 

ICA solves more difficult problems of vision by decomposing the natural image 
into its statistically independent component-images. The natural scene usually contains 
many intermixed features and parts of objects which cannot be stiffly categorized into 
orthogonal eigen-images, but share the data-structure. ICA achieves this more subtle 
decomposition on the level of finer data-statistics. Statistical independence means 
mathematically that the probability distribution of input-data can be factorized, i.e. 
written as a multiple product of probability distributions of some specific sub-sets of 
data. These sub-sets are called statistically independent components. Decomposition of 
the probability distribution (PD) of a natural image into independent factors is 
equivalent to decreasing their mutual information toward zero. BS and OF recognize 
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that their algorithms in practice do not achieve complete statistical independency, but 
merely try to get close to it as much as possible. (Such an practical maximum will from 
now on be meant when speaking about "independent components"). 

Table 2 summarizes the comparison of ICA and sparseness-maximization-net 
SMN versus PCA and Hebbian neural nets: 

P.C.A., Hebbian neural nets 
second-order statistics: bi-linear coupling, 
e. . correlation, convolution, covariance 
decorrelation into orthogonal eigen-images 

I.C.A. b B.&S. , S.M.N. b O.&F. 
higher-order statistics: multi-linear 
cou !in and/or non-linear de endence 
statististical separation of non-orthogonal 
mixt e 

ssian data 
of units" 

roduced 

al orithm more efficient than P.C.A. 

lausible in vision 

Blind separation of images. BS- and OF-nets search for the amplitude­
coefficients or codes ("causes" or "sources"), s, of the independent components, Y, of an 
image X. X is in general representable by a linear combination of independent image­
components Y which form the columns of a fixed matrix A . If we represent this 
relationship with equation X = A S, then each vector-component of vector S acts as a 
weight of the corresponding basis-function Y. Each pixel (denoted by index i) of the 
image X can so be described as follows : 

/' 

x, = L*=I a,*s* = a;1s1 + a, 2s2 + ai3s3 + ... + a,Psl' (I ). 

Each index i or j corresponds to a Cartesian coordinate-pair, like (x,y), of the 2D image­
space. For all pixels (x,y), X = A Sis (in our notation using elements of vectors X, S (its 
elements are s) and Y, hidden as column-vector in matrix A) translated to 

X (x, y) = L:=
1
s*Y*(x,y) (2). 

If we "look in the opposite direction" , matrix W decomposes an image X into 
independent components Y, represented by their amplitudes or codes s (which are 
mathematically represented by individual vector-components, denoted by index k, of the 
vector S). Ideally, we would get S = W X, but in practice we might get S' = W X (e.g., 
comparing to s, vector-components of S ' might be in different order and rescaled). 
Matrix W should separate the image in such a way that codes s can encode as much 
information about image X as possible, but with as little redundancy as possible, so that 
we could reconstruct the initial image X as much as possible with available limited 
neural structure. Ideally, W is inverse matrix of A , so that WA=/, where I is the identical 
matrix which preserves or recovers the initial state (here S), although making a 
(composite) transformation. In such a case, it is thus S ' = S, and the reconstruction of 
the image is perfect. 
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The filters, <P, which extract the independent codes S, are hidden in rows of 
matrix W. Filters r/J differ somewhat from independent components Y, although filters 
recover the amplitudes of independent components. This is because independent 
components Y of the image overlap strongly (they are not orthogonal), but filters 
concentrate their action to areas in spatial-(temporal)-frequency-space where the 
overlap of Y is minimal. With such filters, the amplitude of Y can be got without 
interference with other components Y'. Independent components Y can be considered as 
building blocks of the image X; their filters </>, on the other hand, are used for analyzing 
the image by determining how strongly each building block is present in it. Thus, it is 
more appropriate to say that the independent-component-filters ( r/J, not Y) correspond to 
VI -cells acting as Gabor-like "edge filters" (van Hateren & Ruderman, 1998). 

In this "infomax" approximation, the role of primary visual system (from retina 
up to and including VI) is to find the proper filter-matrix W with the above-described 
properties. W is an extremely simplified and summarized mathematical description of 
results of the cascade convolution processing weighted with receptive fields (these are 
the filters!). 

3 I.C.A. by Bell and Sejnowski (BS) 

ICA-"infomax" by BS. Bell & Sejnowski (1995, sec. 4) show precisely under 
what conditions an "infomax" computational algorithm minimizes the mutual 
information between resulting outputs called independent components. Namely, under 
specific conditions, mutual information J(a,b) between output-components a and b is 
minimized while overall information is maximized1 or equivalently joint-entropy H(a,b) 
is maximized. This is evident from a well-known equation of information theory: H(a, b) 
= H(a) + H(b)-l(a,b) . Joint entropy H(a,b) is maximal if individual entropies H(a) and 
H(b) are maximized and mutual information l(a,b) is minimized. It was also proven in 
Bell & Sejnowski (1995, eh. 2, p. I 131) that the mutual information l(X Y) between 
inputs X =(a ', b ', .. .) and outputs Y = (a, b, .. .) can be maximized by maximizing the 
entropy H(Y) of the outputs (a, b, ... ) alone. 

As long as a and b can interfere, absolute minimum of l(a,b) can not be achieved 
for sure, therefore the probability distribution PD cannot be decomposed into 
independent factors, i.e. can not be written as a product of individual probability 
distributions PD(a) and PD(b). Unwanted interference is eliminated. thus giving 
absolute minimum of J(a,b) and consequently realizing statistical independence where 
PD = PD(a) x PD{b) , if PD of inputs are super-gaussian. Super-gaussian, as many 
natural signals are, means that PD has a sharper peak and longer tail than gaussian 
("bell-shaped"). PCA gives optimal and complete results in the case of gaussian PD, but 
super-gaussian PD (where the bell-shaped function of statistics is more thin, except at 
the bottom where it is broader than the "normal bell") is optimal for ICA. In statistical 

1 The "infomax" details are very subtle. When speaking about maximal overall information, we mean 
maximal information-preservation while transforming input-data into memory-codes or outputs, but at 
the same time being as "economical" as possible. So, input-output information should be preserved as 
much as possible (" infomax"), but at the same time all the redundant (multiple, unnecessary, common) 
data should be eliminated (i.e., mutual information in outputs should be minimized). 
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language, the kurtosis (the fourth-order standardized cumulant measuring deviation 
from normal gaussian PD) must be positive (but see Baddeley, 1996). In the opposite 
case which is undesired: negative kurtosis, i.e. sub-gaussian PD, means interference 
between image-components and so they will not get independent by applying an 
"infomax" algorithm for image-processing. Such rare negative-kurtosis images would 
be problematic while attempting redundancy-reducing image-recognition using ICA. 

In simulations of Bell & Sejnowski (1995 , 1996, 1997), receptive fields develop 
into Gabor-like wavelets which, seen from above, have stripes that are oriented like 
potential edges in the input-image are. So, Gabor stripes are parallel to edges. Not just 
orientation, but other subtle details of the edge-structure are also encoded in such a 
"Gabor filter" belonging to a simulated VI simple cell and its tree-like connections. It 
will now be presented how BS-net incorporates one of many possible "hardwares and 
softwares" for computational modeling of evolution of edge-detecting VI simple cells 
together with their receptive fields . Another option, OF-net, not based primarily on 
ICA, will be presented later. 

ICA-algorithm by BS. BS-net maximizes information by maximizing the final 
joint entropy H (Y) = H[ g(WX + B) ] ; Y = g(U) ; U = WX + B. Input image is denoted by X , 
!CA-output is Y, W is the matrix of !CA-filters, B is the so-called bias. The activation 
function g is the sigmoid function which enables optimal flow of information. Joint 
entropy H(Y) is maximized by performing stochastic gradient ascent, i.e. the elements of 
the filter-matrix Ware changed in such a way that H(Y) increases as much as possible. 
Bell & Sejnowski (1995, eh. 2) derive W for the gradient ascent with the sigmoid g. For 
the whole BS-net the "learning rule" is 

t1w ex: (w r r 1 + c1- 2r).x r (3), 

Aficx:1-2i' (4). 
Here, output-vector Y is obtained from input-vector X. which is transformed by matrix 
W, and then filtered by g after bias-vector B has been added: Y = g(WX+B) . 

This input-output (X-to-Y) transformation, taken from summation-process in 
soma, has no direct relation to dendritic processing, although the results of dendritic 
processing shape the inputs X giving signals WX being transmitted to soma for g­
weighted summation. ES-algorithm parallels HBT with "infomax "-result, but its 
implementation is, it seems, quite artificial, or it incorporates conventional neuronal 
computing rather than HBT-advocated dendritic computing. Primarily, the learning rule 
(3)+( 4) is non-local. This means that neurons must know information about synaptic 
weights (or, in other cases, activities) of many distant neurons without being directly 
connected to them. 

Bell & Sejnowski (1997, p. 3330) improved the rule (3)+( 4), making it less non­
local, using an idea of Amari et al. (see ibid.) for a more local adaptation of filter-matrix 
W: 

L1W ex: oH(Y) wrw =(I+ fur )W (5). 
aw 

/is the identity-matrix (having 1 s on diagonal and zeros elsewhere), and 

Y, = ~ ayi = ~In ayi (6). 
0)1; ou; ou, ou; 
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For this new BS-algorithm, the above comment on implementation is still valid. 
After the entropy gradient-ascent factor, the "auxiliary" WW-factor of eq. (5) gives a 
positive-definite matrix which speeds up the gradient ascent and enables avoiding the 
problematic matrix-inversion in eq. (3). 

Biological implementation of BS? BS, of course, recognize that the visual 
processing from analog retinal photoreceptors to spike-coding pyramidal cells in V l is 
approximated very roughly by the filter-matrix Wand its generalized or pre-processed 

· (Wz-"whitened") versions W1 = WWz (for mathematical details see: Bell & Sejnowski, 
I 997, pp. 3330-3332). BS claim that their pre-processing of data has counterparts in 
retinal ganglion cells and LGN' s relay-cells. 

If the pre-processed filter-matrix W gives relatively biologically-plausible 
outputs ( or filters , or receptive fields, respectively), this does not necessarily mean that a 
W-like retino-geniculate-cortical transformation is implemented in the living tissue. The 
learning rules of BS, the new one in eqs. (5)+(6) almost as much as the previous one in 
eqs. (3)+(4), are both non-local. (Such) non-local processing is not necessarily 
biologically implausible, but has more danger of being so than local learning rules 
which get physiological support easier. 

"lnfomax" algorithms do not (yet) have biologically plausible implementation. 
However, van Hateren (l 992), Wainwright (I 999) and Porrill et al. (1999), among 
others, studied optimal coding of natural images, comparing model with physiological 
or psychophysical measurements, and found that "infomax" ideas are the most suitable 
for image processing. 

4 Sparseness Maximization By Olshausen and Field (OF) 

Sparse coding is related to statistical independence. Bell & Sejnowski (1995, 
1997) emphasize that maximal preservation of information while reducing it to 
statistically-independent components (primary focus of BS) is very similar to 
maximizing sparseness of information-encoding (primary focus of OF). Sparse coding 
means that a small percentage of neurons in the network is firing (is having non-zero 
activities), while the great majority of neurons is quiescent (has zero activity). The bulk 
of coding is thus realized by specialized minority of neurons, although the whole 
network participates in sorting the activity into such a restricted result or output 
(Olshausen & Field, I 996a.b). OF and BS achieve similar "infomax"-results using 
different methods and algorithms. Sparseness is much related to super-gaussian PD of 
input-data with positive kurtosis. Very sparse PD are more peaky and have longer tails 
than gaussian PD. The OF-versus-BS difference in trying to maximize information is 
that BS force the net to minimize mutual information of outputs, but OF force the net to 
produce sparse output-codes. 

Sparse-coding "infomax" by OF. Like BF, OF-method also decomposes the 
image X into a linear superposition of basis functions Y weighted by amplitude­
coefficients s, just like in eq. (2). Codes s, which in OF's case do not necessarily 
represent statistically-independent image-components, but some basis-images of very 
similar type, are dynamic variables which change from one image to another 
(Olshausen & Field, l 996a,b ). 

360 



OF's search for maximal sparseness of the codes s is done "globally and by 
force". They use minimization of the "cost function" E for regulation oflearning: 

E = - (preserve ieformation) - A- (code-sparseness), 
where /4 is a positive constant determining the importance-rate of the sparseness-term 
relative to the first term. The first term PI, measuring preservation of information by 
optimal coding, incorporates the error or difference between the actual image X and the 
reconstructed image (sum of s-weighted components Y) : 

PI= - L x.)X(x,y)- L:=I sk Yk (x,y)]
2 

(7). 

The difference should be as small as possible. If so, Eis kept small, as desired. 
The second term CS, sparseness of coding, "determines the cost" depending on 

how information is distributed among the codes s. If distribution is limited to few 
coefficients s, then CS will be big, and its contribution to total "cost" E will be small , as 
desired. 

(8) 

This sparseness-term to be maximized was constructed by OF to concentrate encoding 
to as few components as possible, "globally and by force", to increase sparseness. Sis a 
chosen nonlinear function, log(] +x2

) or something similar, and a is a scaling constant. 
Optimal S should promote such a set of components Y with equal variance, which would 
have maximal number of zero coefficients s (i.e., codes which could be eliminated to 
economize processing). 

Implementation of OF. The OF learning procedure goes as follows. After each 
image presentation, code-coefficients s are changed in such a way that E is minimized. 
After many image presentations, Y evolve towards a convenient final form which 
ensures maximally-sparse coding directly and statistically-independent coding indirectly 
in trade-off with requirement of minimal reconstruction-error. 

Let us see details of iterative dynamics of codes s, which are similar to Gabor 
coefficients, and of components Y, which are similar to Gabor wavelets. Olshausen & 
Field (1996a,b) derived, from the requirement of gradient-descent of E, the equation of 
iterative adaptation of coefficients sk: 

a, ;1(1) = +· -~ c.,. / 1)-~"( •:(,) J l (9) 

where 17 is the learning-constant (bigger 17 makes learning faster) ; the auxiliary scalar­
product coefficients ck and ClcJ are : 

ck = L,LJ* (x ,y)X(x,y ) 

c kj = L,LyYk(x, y)Y/ x,y) 

(10), 

(11). 

After several input-images X have been computed using eq. (9), Yk are updated by 
making a stepwise decrease of E (gradient descent of E): 

~Yk(xm ,Yn) = 17,. ([X(x.,, yn )-X'(x.,,yn )¥k) (12). 

17..., is the learning-rate, and X ' is the reconstructed image: X '(xm, y,J = Ik Sk Yk (xm, y,J. 
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Comparison OF - MacLennan. There are similarities of OF-algorithm and the 
dendritic field computation model by MacLennan (in Pribram, 1993, eh. 6, p. 179). 
MacLennan started from the model of Daugman ( 1988) and considered a possibility to 
implement it in a dendritic net. Daugman at an early stage used just the first left-side 
term in eq. (9), i.e. i);k(t)l a = 1'/Ck. Following Daugman, MacLennan then made 
improvement by using the first and the second (with Ck;) left-side term of eq. (l l). This 
linear model, possibly implementable in dendritic nets (as shown in: MacLennan in 
Pribram, 1993, eh. 6), is equivalent to OF-model with exception of the sparseness-term. 
OF invented CS-term (8) which makes their algorithm "more infomax" than the 
Daugman and MacLennan algorithms, focused on PI-term (7), are. We should pay 
attention to a possibility that the linear model with OF's extension, which uses the 
sparseness-maximization (CS) term, could be dendritically implemented as MacLennan 
has shown for the information-preservation (PI) term. 

Biological implementation of OF? OF claim that their learning algorithm can 
be implemented in a network with local connections. This is true, but the adaptation 
dynamics are regulated by a global requirement to minimize an abstract, artificial 
"cost"-parameter E. In the case of Hopfield's neural nets, E is similar to physical 
energy. In physical systems, energy is minimized naturally. In complex and biophysical 
systems, free energy is minimized naturally. Brain, however, seems such a special 
biosystem, that tries to maximize efficiency by maximization of information 
("infomax"), or equivalently, by reducing redundancy and information-loss during net­
processing which transforms inputs to outputs. As OF show, this may be done by 
sparseness maximization. This seems plausible and natural in principle, but how this is 
concretely implemented in the brain tissue is not clear. Minimization of OF's Eis not so 
natural as in Hopfield' s case. It will remain an open question, whether brain uses such a 
global regulation, until anatomical and physiological research reveals more details on 
visual-brain's structures and cooperation between them. The fact that the needed 
connectivity and processing is not nonlocal raise the possibility of being biologically 
implementable. A special sort of lateral inhibition could even be sufficient, but this is 
not necessarily the case at all. Other options include top-down constraining of rather 
specific type, since the form of OF' s E is quite specific, and this raises the question 
which higher visual centers could regulate it and how. Nevertheless. OF's algorithm 
seems to have more chance to be some day found to be biologically plausible than those 
by BS. Namely, BS-algorithm is nonlocal, more complicated and more artificial than 
OF's. BS derived their algorithm by purely mathematical means as abstract as 
factorization of probability distribution. OF, on the other hand, derived theirs by more 
natural and simple, it seems, means like sparse representation. 

Overcomplete coding. OF-algorithm allows overcompleteness, i.e. the number 
of basis-vectors (memory-patterns) is greater than the dimensionality of input-images 
(Olshausen & Field, 1997; Olshausen & Millman, 2000). This is achievable by OF even 
with high degree of sparseness. OF's basis-vectors need not be linearly independent. 
BS, in contrast, do not realize overcomplete representation (Bell & Sejnowski, 1997). 
Pribram (in Wang et al., 1998) emphasizes physiological evidence on a tight-frame 
representation through oversampling. 
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5 Spatio-Temporal and Extended "lnfomax" 

Natural image sequences. Van Hateren & Ruderman (1998) simulated ICA in 
spatio-temporal domain. They successfully reproduced (van Hateren & van der Schaaf, 
1998) experimental findings that V 1 simple cells have receptive fields localized in space 
and time (Artun, Shouval & Cooper, 1998), bandpass in spatial and temporal 
frequencies, tuned in orientation, and selective for direction of movement. A Cray­
supercomputer was used for running an BS-based !CA-algorithm by Hyvarinen & Oja 
( 1997)2 on sequences of natural images taken from television programs. Instead of 
detection of static edges, the simulation of van Hateren & Ruderman ( 1998) with input 
data-sets having spatial plus temporal dimensions reproduced spatio-temporal Gabor­
like receptive fields responsive to moving edges. Corresponding edge-like, edge­
detecting wavelets moved with fixed velocity perpendicularly to their own orientation­
ax1s. 

Moving Gabors. Beside adding temporal dimension to data-vectors and 
successfully reproducing VI-like "moving Gabor-wavelets" (i.e., moving sinusoids in a 
steady gaussian envelope), this simulation did not go essentially beyond algorithms by 
BS and by Hyvarinen & Oja ( 1997) - in the sense of satisfying the need for more 
biologically-plausible implementation, not merely output.3 Filters focused on low 
spatial frequencies tend to be tuned to faster movements in natural-scene movies, in 
contrast to filters centered at high spatial frequencies. Van Hateren & Ruderman ( 1998) 
somewhat reinterpreted BS by emphasizing that the independent-component filters <p (in 
rows of W), and not the independent components Y (in columns of A) which differ 
somewhat from filters, are comparable to V 1 simple cells with their receptive fields . 

Extended "infomax". T.-W. Lee (1998) made an extension of BS-algorithm 
and roughly reproduced the results of Bell & Sejnowski (I 995, 1997). In the case of 
super-gaussian data, his ICA learning rule is: AWcx: (/ - th u ur- u ur)W (Lee, l 998, eq. 
2.56). In the case of sub-gaussian data, the learning rule is the same, but the minus 
before th is replaced with a plus. Recall that sub-gaussian data were problematic for BS­
net, but for Lee's extended ICA this is not so. Nadal & Parga (1997, sec. 4.5) show how 
"infomax" can be related to the BCM theory of synaptic plasticity4. It was also found 
that if data-bases are overcomplete to a higher degree, then input-data are processed 
more efficiently. 

2 The fast algorithm of Hyviirinen & Oja ( 1997), which has been used in spatio-temporal image 
simulations, realizes the "infomax" ideas by special statistical procedures, different from BS, which can 
be considered as a fixed-point algorithm for maximum likelihood estimation of the !CA data model. The 
new versions of this extended ICA algorithm are in: Hyviirinen (1999) and, applied to modeling complex 
cells ofVl, in Hyviirinen & Hoyer (2000). 
3 New versions, like Hyviirinen (1999) and Hyviirinen & Hoyer (2000), bring improvement of 
computational efficiency and speed only. In latter paper, however, interesting new relations to VJ­
modeling were proposed. 
4 BCM-theory (original in: E.L. Bienenstock, L.N. Cooper & P.W. Munro (1982): J Neurosci. 2, 32-48) 
bases on a nonlinear generalization of the Hebbian (covariance) rule with significant modifications. While 
the Hebbian rule prescribes strengthening of synaptic connection if presynaptic and postsynaptic activity 
are coactivated, BCM-model only does so if the coactivity exceeds a threshold, else the synapse is 
weakened. The threshold is variable and depends on the mean-activity level of the neuron. 
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6 Discussion on the Relevance of "lnfomax" Models of Vision 

Outputs plausible. Many different models with different algorithms (usually 
ICA-based), using different mathematical or statistical means and different 
computational "implementations", have succeeded to reproduce satisfactorily (for 
present criteria) the receptive fields of V l cells in their static, spatio-temporal and 

l . 5 comp ex vanants. 
Implementation presently implausible. None of the models can be considered 

as satisfactorily biological in the sense of implementation. This is recognized by the 
authors of models themselves as well as their reviewers like Lee (1998, eh. 8). ICA 
models are currently less supported by physiological evidence than Hebbian models. 
This might change if more experimental attention will be paid to "infomax" models in 
the future, since they have more support of psychophysical experiments and 
information-theoretic studies ( e.g., Wainwright, 1999; van Hateren, 1992; Porrill et al., 
1999) than Hebbian models. Maybe "infomax"-processing is realized on a "bio­
software" level more than on a "bio-hardware" level as Hebbian models seem to be (at 
least more than "infomax"-models). This could be the reason why there is the 
unresolved problem of biological implementation of"infomax" models like ICA. 

Chances for biological support? Phase-Hebbian models, including HNeT 
(Sutherland, 1990) and QAN (Perus, 2000, in Wang et al., i998), combine the Hebb 
correlation-rule Ik A/A/ with phase-differences S/-S/ (because the complex-valued 
activities V = A exp[v(-1) SJ are correlated or convoluted). The phase-Hebbian learning 
rule Ik A/A/ exp[v(-1) (S/-S/)J does not contradict current physiological and 
psychophysical experiments and can support "infomax" by processing higher-order 
correlations. For early-vision problems (Poggio et al., 1985) like edge-detection, a 
"phase-Hebbian infomax" compromise-model has more chance in getting physiological 
support than for higher-order problems like recognizing occlusions of objects. 

Neuropsychological consideration. ICA seems to be a good model for image 
processing, but not necessarily for object perception (which is well distinguished from 
image processing by HBT and other models of vision, and this has psycho-physiological 
reasons). Object recognition, based on search for perceptual invariances (Hoffman, 
1966. 1968, 1979; Caelli, 1976), might need a combination of ICA and associative 
processing (Haken, 1991 ), probably in attractor-nets which manifest gestalt-like 
structures. Phase-Hebbian processing might be the searched-for biologically­
implementable associative "infomax algorithm" for higher image-processing after 
natural images have been successfully preprocessed and abstracted (including 
extraction of edges) by an !CA-like ''infomax algorithm". So, first stage would be ICA­
like preprocessing of images, and then another (phase-Hebbian based?) associative / 
synergetic process would take over to recognize objects from images. Simulations by 
Bartlett & Sejnowski ( 1997) support this hypothesis. 

Quantum nonlocality and coherence might help to diminish the problem of 
nonlocal ICA-processing, but not necessarily at all, because very specific information­
access is needed in algorithms. 

5 Their infonnation-theoretic meta-analyses begin to emerge (e.g., Lewicki & Olshausen, !999). 
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7 Dendritic Computing and Synthesis With QAN and Attractor-Nets 

MacLennan's linear field model. MacLennan (1999; in Pribram, 1993) has 
demonstrated how could parallel-distributed processing be realized in more-or-less 
continuous physical media so that information would be processed in analog rather than 
digital manner. Possible implementations of field computation in dendritic nets were 
systematically studied in MacLennan (in Pribram, 1993). Taking into account HBT, it is 
argued that function of axons is communication, but function of dendrites is 
computation. In spite of increasing awareness of importance of nonlinear processing 
(mainly at axon hillock), MacLennan (in Pribrarn, 1993, espec. pp. 170-172) shows 
precisely where linear approximation is not to be abandoned, especially not in dendritic 
nets. Since quantum processing is (basically) linear, MacLennan' s model might have 
connections with quantum associative dynamics (Perus, 1996, 1997, 1998, 2000). 

Possible relations with QAN. Approximate global linearity of dendritic 
processing, in spite of many local (i.e., subcellular) nonlinear ingredients, indicates that 
the well-known model of Hopfield, and those by Haken (1991 ), are better 
implementable in dendritic nets than on neuronal level (meaning emphasis on processes 
in soma and axon). In addition to proposals by Harneroff, Penrose and others (like 
Marcer & Schempp, 1997), Perus (2000) presented a purely-quantum implementation of 
the linear Hopfield model with phase-Hebbian learning rule (QAN). 

After presenting a general set of dynamic equations for dendritic-field 
processing, MacLennan (in Pribrarn, 1993, sec. 6.1) presents a concrete linear algorithm 
based on Gabor wavelets as eigen-vectors (for our purposes: eigen-images). They are 
not orthogonal in general, but MacLennan (in Pribram, 1993, sec. 6.2) analyses an 
often-occurring case of optimal processing of "nearly orthogonal" data. Gabor wavelets 
are remarkably similar to certain wave-packets used in quantum theory. "Almost 
orthogonal" input-data, which are usually optimal for Hebbian-based associative 
processing and memory, can be used also in QAN-model, as proposed in Perus (2000). 
It is shown there that such a "fuzzification" of quantum-mechanics- or Hebb-based 
information processing on a complete orthonormal set of eigenvectors is possible and 
useful in the case of an open system. 

Image processing plus object perception. Bartlett & Sejnowski (1997) have 
quite successfully (and better than with PCA - see also Gray et al., 1997) attempted to 
combine !CA-based image processing (VI-like) and object-perception with attractor­
networks (ITC-like?) into an unified computational model. Specifically, results of ICA­
preprocessing of input-images (in this case, faces from various views when a subject 
moves his head or we move around him) were put into attractor-neural-net, after passing 
a low-pass temporal filter. As a result of inter-spatial and inter-temporal Hebbian 
associations, faces neighboring in temporal sequence landed into the same attractor. 
Thus, view-independent categories of individual objects (faces) were formed as 
corresponding attractors - an attractor for each (head-moving) person. 

In the attractor-net, Hebbian associations between Gabor-filtered proximal time­
sequences made the neurons' tuning to specific facial poses more broad. Addition of 
lateral connections, however, achieved invariance to pose of a face. This pose­
invariance was manifested by all single-person's poses "falling into" the same attractor. 
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One could speculate that phase-Hebbian learning would improve the results of such an 
encouraging integrative model which attempts to bridge the gap between image­
perception, which is view-dependent, and object-perception which is view-invariant. 
QAN-implementation of such attractor-dynamics is also realizable. 

8 Conclusions 

"Infomax" preprocessing of images for further quantum-holography-like visual 
processing has been presented and discussed in the context of Pribram's holonomic 
brain theory. Since holography is an universal process, the microstructure of junctional 
slow-wave potentials attributed to polarization fields in dendritic nets (Pribram, 1971 , 
1991 ) may have various implementations, but the basic one would be quantum. The 
QAN model could realize it if Gabor wavelets would be used as QAN eigenstates If/ to 
be processed as detailed in Perus (2000; in Wang et al., I 998). If this is the case, then 
the neural brain serves as an encoder and decoder into and out of the Gabor 
representation, and such !CA-produced Gabor wave-packets are processed in quantum 
interference dynamics (Ahn et al. , 2000). Detailed biological structures and processes 
(HNeT, ICA-like?) which maximize (de)coding performance (as ICA does) remain to 
be researched. In our model, the core of conscious visual information processing is of 
quantum nature, but modulated by classical neural processes (Perus, 1997). Further 
computer-simulation-based research and detailed reports are forthcoming. 
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