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This paper presents some conjectures on modeling the quantum systems using lossless
orthogonal neural nets. Structure of these nets consists of n compatibly connected 
( entangled) pairs of neurons-qubits. 
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1. Introduction 

It seems more and more, that tending from different directions the scientific 
world is approaching the following thesis: The Nature, the Universe exists as an 
information aether or more technically: the Structures exist as information flow fields. 
Such impressive thoughts have been presented by various authors also at this conference 
(see Mitchell, I 999). MoreoYer, it seems that the notion of information is a fundamental 
category in the description of quantum reality and it can be defined independently from 
the notion of probability. 

Quantum information processing arising from quantum theory comprises two 
related parts: quantum computation and quantum information theory. To process 
quantum information one needs a type of quantum mechanics based system - quantum 
computers. Currently, nobody knows how to build a quantum computer, although 
quantum computer technology continues to develop and some suggestions have been 
made as possible designs for such computers. Even if no useful quantum computer is 
ever built, some models of quantum computers have been studied (Shor 1997, Bennet 
1998). 

Recently, we have shown how the properties of passive neural networks could 
be interpreted in order to model the quantum systems (Sienko 1999). The purpose of 
this paper is to give some further interpretations. As a result of such considerations we 
obtain an oscillatory "quantum'" model of artificial neural nets that could be relevant for 
biological nets. We point out that such a quantum computer model could consist of n 
pairs of entangled lossless neurons-qubits. Thus, one obtains a lossless neural net with 
an orthogonal matrix of connections forming certain, maybe useful, type of unitary 
transformation used in quantum computation algorithms. 
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At first let us note some fundamentals of quantum mechanics used in quantum 
information processing: 
a) Superposition of states 
b) Unitarity of state transformations 
c) Entanglement 

Quantum entanglement discovered by Einstein, Podolsky, Rosen (EPR) is one of 
the most interesting phenomenon leading to non classical effects revealed by 
contemporary physics. The simplest example of such a entangled state is the singlet 
state of two - '-'.: spin particles labeled by 1 and 2: 

The properties of the states of this kind are responsible for phenomena like quantum 
cryptography , quantum dense coding, quantum teleportation and quantum computation. 
Such an entangled pair is a quantum system in an equal superposition of the states 

The entangled state contains no information on the indi,idual particles - it only 
indicates that the two particles will be in opposite states (Horodecki 1998). 

2. Lossless Neural Net as a Model of a Quantum System 

A concept of Passive Neural Net\vork has been proposed few years ago (see for 
example (Luksza 1998) ). The unique characteristics of these neural nets are: 

passivity of neurons 
compatibility of connections 

It is worth noting that passive neurons can be lossless if there is no dissipation of 
pseudoenergy-information energy (Arbeitsenergie). For completeness of this 
presentation let us remind some basic features of the lossless neural nets. A first order 
model of the lossless neuron in the fonn of information - flow network is given in 
Fig.1. 

where: 0(x)-activation function (sigmoidal), w,-synaptic weights · 

Fig.l . A first order model of the lossless neuron as information-flow network. 
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It can be seen that the passivity reads for technical fonnulation of the following relation: 

N l 

E = L f viyi dt ~ 0, V t (1) 
i=I -x 

where: E - information energy absorbed by the neuron. 

To model a quantum system using lossles neural net one postulates the following 
conjectures: 

Conjecture 1. 
Lossless neuron = physical model of one bit (classical) or 

= elementary building block of, acuum. 

A structure of lossless neural net can be obtained as compatible connections of N 
lossless neurons. Thus 

where: E, - pseudoenergy absorbed by i-th neuron. 

Hence compatibility of connections presen-es the losslessness of the net. 
An example of2 neuron net is shov,n in Fig.2. 

E=E+E=ll 

Fig. 2.Two lossless neurons compatibly connected - a model of one 4ubit ur ':: !,pin 
particle. 

It can be seen that the state - space description of the net from Fig.2 is following: 

(2) 

(3) 
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Generally, the lossless neural net composed ofN neurons is described by the following 
state - space equation : . 

x = W0(x) 

where: W - matrix of weights (information flow connections) is ske,\ - symmetric 

Conjecture 2. 

(4) 

a Compatible connection can be seen as a model of entanglement i.e. Compatible 
connection = Entanglement 

b. Compatible connection of 2 lossless neurons i.e. one entangled pair of two 
neurons= model of one qubit or = 112 spin particle (Fig.2 and Eq.(3 )). 

Def.1. Lossless-orthogonal neural net (LONN) 
Neural net composed of n pairs of entangled lossless neurons i.e. qubits will be called 
lossless - orthogonal neural net, if weight matrix W is orthogonal (and skew· -
symmetric as given by Eq. (4) ). 

Example 1. 

Two entangled pairs of qubits fonning a lossless - orthogonal neural net is shown in 
Fig.3. This can be seen as a model ofEPR pair. 

Fig. 3. Lossless - orthogonal neural net created by 2 entangled pairs. 

The weight matrix of this neural net is gi\'en by: 

and can be easily orthogonalized. 
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The neural net from Fig.3. can be used as a building block to create N pair orthogonal 
net. For example the structures of 4 pair and 8 pair neural nets are given by the 
following weight matrices: 

[
w2 

W= 
.j -1 

where: 1- unity matrix. 
It is worth noting, that changing the sign of connections in matrix W2 i.e.: 

I 
0 

-1 
w, = 

. -1 

0 

() 

0 

() 

0 -~1 -1 

0 

(6) 

(7) 

one obtains a model consisting of 2 entangled pairs of qubits revealing the features of a 
0 spin particle. This type of structures have been used in synthesis of losless (not 
orthogonal) neural net based associative memories-static and oscillatory/chaotic (Citko 
1997). 
Quantum description of analysed here structures needs that their states are determined 
by vectors (rays) in appropriate Hilbert spaces. Thus, the states of lossless-orthogonal 
neural nets are vectors from Hilbert space spanned by spinors ( eigenfunctions of 
infonnation-tlow matrix W) with scalar product given by Eq. (I). On the other hand, the 
states of lossless neural nets having the structure based on O spin particles are spanned 
by Fock-Iike basis. 

Some basic properties of the lossless-orthogonal neural networks can be driven from 
Eq.(4): 
I. Structure of these nets creates the following nonlinear vector field: 

W 0 (x) = v(x) 

where : W (dim.n x n) - orthogonal and skew- symmetric (n even). 
V(X) is tangent vector field on sn-lc Rn satisfying: 

(v(x),x) = 0 

!v(x )i2 = (v(x), v(x)) > 0 

for all XE s11-\sphere) 

It means that the only equlibrium point of the net is x = 0 i.e. 

v(x) = W 0 (x) = 0 ➔ x = 0 
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" LONN detennines a type of orthogonal transfonnation, namely: 

W 0 (x) + l;n = 0 

where :l;n - input vector (input data or information) 

Hence, output of the net 

(12) 

( 13) 

can be seen as a Walsh- like spectrwn of input infonnation. It could be called as n 
entangkd pair based spectrum. 
3. The most interesting aspect of LONN theory seems to be given by the famous Adams 
theorem (Eckmann 1999): 

Then: 

Th..: maximum number of continues orthogonal tangent vector fields on sn-l 

i~ p(n )-1 , ,,here p(n) is Radon number of n. Hence, one has the following 
conclusion: 
Let W 1, • • • ,\\'s be a set of orthogonal Hurwitz-Radon matrices and let 

a 1, ••• ,a , be real numbers with I a ~ = \. 

W(a) = I a1 W1 (14) 
is orthogonal , \\,here Sma, = p(n) - I 
Technically, number Smax establishes a maximum of LONN capacity. On the other hand, 
LONN with weight matrix W(a) can be seen as an implementation of homotopy 
groups. 

Conjecture 3. 
LONN with weight matrix W(a) = Model of quantum system. 

Since, such LONN are physically implementable in VLSI technology with very small 
(probably) time of decoherence, hence : 

Conjecture 4. 
A quantum computer being a real- time very large scale parallel processor can be 
implemented as a LONN. 

3. Oscmatory "Quantum" Mode) of NeuraJ Nets 

It is known, that only unitary transfonnations of quantwn systems are allowed. 
In the case of considered here lossless neural nets, such transformations are 
implemented by changing the infonnation-flow matrix (i.e. connections) W . From 
theoretical point of view, many proper mathematical tools can be here exploited (for 
example symplectic groups). Technically, one should propose a structure with variable 
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weights. We have found that one of the most interesting solutions can be achieved by 
using the phase-lock loop principle. Such an oscillatory, PLL based structure 
implementing one qubit is shown in Fig.4. 

s,(t) 

H= I 

,·,(t) 
V.C.O. 

. 
S2(1) c,lt) 

::, ·r .. H=I 

\ ~\I) 

5;(t)= Ac; sin(roc;t + 4,;i) 

v;(t)= A,,; cos(roc;t + 4> ;2 ) . i = 1.2 

Fig.4. PLL based structure of one qubit. 

Indeed, the phase-signals are governed by the following equations: 

where: 

i = 1,2. , 

I 

q, 12 = ±11rk " f y 2d, 

I 

cb =+2rrk , 2 f y,dt 
_, 

ei(t) = kmAciAvisin Xi 
kmi• sensitivity of multiplier 
k,1- sensitivity of oscillator (V.C.O.) 

It can be seen, that the weights of connections are here controled by the 
amplitudes Ac; of input carriers. The structure from Fig. 4. can be easily scaled to the 
connection of N qubits. The analysis of properties of such neural nets will be published 
elsewhere. 
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3. Some Notes on Anticipation 

A little thinking shows that at Rosen 's concept of anticipation, there is no the 
mystery of time-reversal (Glaserfeld 1998). Dubois tried to make this concept more 
genuine by the notion of incursion (Dubois 1998). Using the incursion is, however, not 
necessary to realize anticipatory systems i.e. systems implementing the time-reversal. 
Indeed, given dynamical system can be realized by using e.g. integrators or 
differentiators (non-causal), delays or predictors (non-causal) etc. We guess, that 
Piaget's characterization of anticipatory systems based on the follO\ving assumptions 
(Zaus 1999): 

1. conservation of information 
2. recursivity of processes 

is fully correct. 

To illustrate the above characterization let us formulate the following 
conjecture:Lossless-orthogonal neural net F[ . ] with weight matrix W, lossles
orthogonal neural net F 1

( . ] with matrix W 1 and equilibrium equation of F[ . ] 
constitute an anticipatory system. First of all let us note, that the equilibrium equation 
(12) can be seen as an atemporal model of F[ . ]. Hence we have: 

0'+"' = Fl1:
11 
J - an analysis by dynamical system 

8 1 =-WTl :11 - a solution from model 

1;;t.t = r 1 l0 1 j -a synthesis (anticipation) 

where: I\0 input at the moment t 
0 1 

- response at the moment t 
At > O 

( 16) 

t17) 

/18) 

Since the model ofF[ . ] is non linear (saturation of 0 ), so by virtue of this rather simple 
anticipatory system one can formulate , maybe useful, conclusion: Anticipation is 
possible in information preserving, adaptable system under ·\veak" inputs, for example 
in lossles-orthogonal neural nets. 

4. Concluding Comments 

This paper presents some conjectures on modeling the quantum system by using 
LONN. It is however worth noting that the lossless orthogonal neural nets are 
interesting objects of searching per se. Their unique features can be summarized as 
follows: 
losslessness tt losslessness of elementary building blocks i.e. neurons 
skew symmetry ttcompatibility of connections 
orthogonality tt topology of connections 
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Hence, LONN should be, first of all, seen as a Walsh- like orthogonal 
transformers. Having such nets implemented, one could realize so called quantum 
computation algorithms and quantum information processing (e.g. Quantum Associative 
Memory, Quantum Computational Leaming Algorithm, Quantum Coding and 
Information Compression ). Presented in this paper structures of LONN rely on concept 
of general dynamical system. It is possible however to formulate such structures by 
using the concept of lossless gates i.e. memoryless, lossless neurons. 
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