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Infinite momentum frames (IMF) have been first introduced by J. Kogut and L. 
Susskind ( 1973 ) in the theory of partons. The concept of infinite momentum frames 
(IMF) have been developed by R. DUTHEIL ( 1984) on the basis of complex rotations 
group in a pseudo Euclidean space. 
In the present communication, we re-examine in section 2, the different definitions of 
IMF proposed by these authors: we criticize the not allowed renormalization of 
« diverg,ml coordinales » done by J. Kogut and L. Susskind, we abstract the 
development by R. DUTHEIL of a two dimensional infinite momentum frame (IMF-2) 
from considerations on the subluminal and the superluminal Lorentz groups, we 
criticize the generalization to a four dimensional infinite momentum frame (IMF-4) 
proposed by R. DUTHEIL and G. NIBART. 

In section 3, we study the relativist transformations of two dimensional infinite 
momentum frames (IMF-2 ), which correspond to a subluminal Lorentz transformation 
or a superluminal Lorentz transformation. 
In section 4, we propose a new mathematical concept ofrMF based on isotropic vectors 
and having any number of dimensions. 
In section 5, we re-examine the relativist quantum theory in IMF-2 developed by R. 
DUTHEIL, we propose a generalization of the Klein, Gordon and Fock equations in IMF-
4, and we discuss the generalization by R. DUTHEIL of the Dirac equations to 4 
dimensions. 
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t Introduction 

1.1 First uses of infinite momentum frames 

J. KOGlIT and L. SussKIND have introduced infinite momentum frames (IMF) to 
describe « the instantaneous distribution of partons present at any time within the 
hadron» [I]. They have defined an IMF as an ordinary referential frame (ORF) moving 
with almost the light velocity. In such an infinite momentum frame, time is so much 
dilated that hadrons appear as a static collection of partons. 
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R. DUTHEIL has developped the concept of infinite momentum frames (IMF) on 
the basis of complex rotations group in pseudo Euclidean space ( see section 2.2 of this 
paper) and he has applied infinite momentum frames to the theory oftachyons [2]. 

Infinite momentum frames have been used by R. DUTIIEIL and G. NmART [3] to 
show with timelike and spacelike Dirac equations in IMF, that a subluminal anti
fermion can be interpreted as a superluminal fermion having an electric charge of 
opposite sign. R. DUTHEIL has also shown with these Dirac equations in IMF, that a 
photon may be considered as composed of a subluminal fermion and a superluminal 
fermion [4,5). 

So these authors have used IMF for specific purposes, but they do not have 
studied the theory of infinite momentum frames for itself. 

1.2 Why infinite momentum frames ? 

A Cartesian referential frame is a mathematical representation of three orthogonal 
measuring rods, and today ordinary referential frames are nothing else. A natural 
observer who holds a measuring rod in his hand and who has a clock in his pocket, 
would use tools which are not adapted to space time continuum experiments and so he 
may not hope to experiment space time duality beyond the light barrier. 

The standard meter has changed: it is no more a rod but an electromagnetic wave 
length. To measure durations we have exchanged the old egg timer for an atomic clock: 
the standard second is given by an electromagnetic wave period. Moreover most 
relativist experiments use electromagnetic properties. 

Because the standard space time units, the space time continuum and the space 
time duality, all are related to electromagnetic properties, we should rather use infinite 
momentum frames which are the proper referential frames of photons. 

2 History of Infinite Momentum Frames 
An infinite momentum frame corresponds to a relativist singularity, where 

momentum and energy become infinite, except for photons. It is not a referential having 
an infinite velocity, because a tachyon with an infinite velocity has a null energy and 
has a finite momentum which is the« fundamental momentum» [6]. 

2.1 First definition of an infinite momentum frame 

J. KOGUT and L. SussKIND have defined an infinite momentum frame as a 
referential frame moving with nearly the velocity of light in vacuum, relatively to a 
natural observer, but they have only considered subluminal referential frames. 

Let us consider a mass particle at rest in an ordinary referential frame K, and an 
other sublurninal referential frame K' moving along the x axis with a velocity v which is 
almost equal to the light velocity. The energy of the particle in K is 

E = m0c2 
(\) 

and in K' it is 
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E'= i"c' (2) 

so when the relative velocity ofK' increases and tends to the light velocity in vacuum 
J vJ ➔ e (3) 

the energy related to K' tends to infinity. 
E' ➔ oo (4) 

Remark: The divergence of energy is usually interpreted as a kinetic energy property, 
but this example shows that the relativist singularity depends on the choice of a 
referential frame. Actually a mass particle never has an infinite energy because there is 
no natural observer having the light velocity, and a mass particle cannot have an infinite 
energy because paradoxically it would contain the energy of the whole universe. 

and 

Let us write the Lorentz transformation K➔K' as the system of equations 
x' = x cos 0 + i et sin 0 

et'= ixsin0+etcos0 

y ' = y 

=' == 
with a complex rotation defined by the both equations 

where 

1 
cos0= ~ 

v1-p2 

sin0= R" 
1-p2 

P=~ 
e 

The complex rotation have an imaginary angle 0 
0 = Arctg(i P) 

Remark: In equations 7 the cosinus is always positive 

(5) 

(6) 

(7) 

(8) 

(9) 

cos0 > 0 (10) 

but the sign of the sinus depends on the sign of p, i.e. it depends on the direction of the 
referential K' , The relativist singularity corresponds to velocities almost equal to the 
light velocity. When lvl ➔ e i.e. IPI ➔ 1 we have 

and the angle i0tends to infinity 

cos0➔ +oo 

isin0 ➔ ±oo 

i0 ➔ ±oo 
with the same sign as the sinus in equation 12. When P> 0 we have 

isin0 ➔ -oo 
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(12) 

(13) 

(14) 



so the angle i0tends to infinity negatively 
i0 ➔ -CX) 

When /3 < 0 we have 
isin0 ➔ +oo 

and the angle i0tends to infinity positively 
i0 ➔ +oo 

Anyway the relativist singularity results into infinite coordinates 
x' ➔ ±oo 

et' ➔ ±oo 

so we might say that x' and et' are « divergent coordinates ». 

(15) 

(16) 

(17) 

(18) 

To propose an approximation of equations 5 which represents the Lorentz 
transformation K➔K' near the singularity, J. KOGur and L. SussK.IND have incorrectly 
considered « it is convenient to define rescaled quantities with these divergences 
removed » [ 1 ], and they have defined a « dilated time » r 

r = Jf et ' e+i/J 

with a scaling factor e;o which is divergent as shown below 
i0 ➔ -oo ⇒ e+;o ➔ 0 e-;o ➔ +oo 

i0 ➔ +oo ⇒ e-;IJ ➔ 0 e+;o ➔ +oo 

where the sign of i0depends on the direction ofK' . It is not correct at all! 

(19) 

(20) 

(21) 

To do their renormalization, these authors have divided the time coordinate by a 
divergent term. Their mathematical development is dubious and we cannot accept it. 
Well, it is not so easy to remove the relativist singularity! 

However they have been led to express their « dilated time » as 
r = ,½- ( x + et) (22) 

in the ordinary referential frame K, and so they have introduced a light cone coordinate. 
Since this work, IMF have been understood as being a system of light cone coordinates. 

2.2 Second definition of an infinite momentum frame 

R. DUlHEil.. has introduced an infinite momentum frame (IMF) on the basis of 
complex rotations groups in a pseudo-Euclidean space, from considerations about the 
transformation of an ordinary referential frame (ORF) into a tachyonic referential frame 
(TRF). 

Complex rotations groups in pseudo-Euclidean spaces have been introduced very 
early in the theory of Relativity, and A EINSTEIN has already used them in a lecture at 
Princeton University [7], but considing only the subluminal Lorentz group. On the basis 
of complex rotations groups of four dimensions, R. DUTHEIL has introduced the 
superluminal Lorentz group [2,4,5) and also the concept of infinite momentum frames 
[2,4,5]. 
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As the SO(3,l;C) and SO(l,3;C) groups of the 4x4 complex matrix are 
isomorphic together and with SO( 4; C) there are two complete orthochronous Lorentz 
groups, which have the same Lie Algebra, and which are isomorphic with one another 

.e._ .t: (23) 

L.. is the usual Lorentz group (orthochronous, subluminal) which preserves the real 

metrics gµ,· having the signature ( +--- ) with the usual real coordinates, called 

subluminal coordinates 
(24) 

_t; is the superluminal (and orthochronous) Lorentz group which preserves the real 

metrics g,
11 

having the signature ( - ++ + ) with the inherent real coordinates, called 

superluminal coordinates 
(25) 

They correspond respectively to ordinary referential frames (ORF) and tachyonic 
referential frames (TRF). The ORF and TRF metrics have opposite signatures, and in 
the framework of the special theory of Relativity the metrics tensors can be represented 
with the following constant matrix: 

. r-1 0 0 o] 0 1 0 0 
[ gµ., ] = 0 0 I 0 

0 0 0 I 

(26) 

where the tensor symbol between brackets indicates the associated matrix. There is only 
one matrix operator S which transforms a metrics to the other and reciprocally [2], as 
shown in the matrix equations 

[
gµ,·J: [s](:µ•·J 
gµ, -l- [s][gµ,·l 

and the matrix operator [S] is the opposite of the unity matrix 

[S] = r~l ~I ~ ~ .] 
0 0 -1 0 

0 0 0 -1 

(27) 

(28) 

From this remark R. DlITHEil. has shown that there is an operator T which enable to 
~-

pass from L.. to .t; and reciprocally, and he has defined the « transceic » operator T 

with the following matrix equation 
[s] = [r][r] (29) 

The equation 29 has several solutions for T because the 4-matrix [S] has several square 
roots, and two examples of solutions are given in equations 31,32 below. 
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Nevertheless R. DUTHEIL has proposed [2] only one solution: the operator T defined by 

[rJ = l; ! :, ~] (3o) 

0 0 0 ±i 
where the imaginary number i represents the rotation operator of angle n/2. He decided 
to choose the case with all plus signs as in Ti: 

lo i o o] 
i O O 0 

[I;]= 0 0 i 0 

0 0 0 i 

(31) 

Later he asserted [ 4 J that there is only one operator T1 which is defined by the equation 
29. It is not true because the matrix [S] has several square roots. Here is an other 
possible operator T;: 

lo i o ol 
i O O 0 

(7;]= 0 0 0 i 

0 0 i 0 

(32) 

Next R. DUTHEIL has explained [2,4] that the operator T does not belong to S0(4;C), 
because the matrix [T1] defined by equation 31 has a negative determinant 

det[I;] = -1 (33) 

but his demonstration is not correct because the other solution T2 has a positive 
determinant 

det[I;) = +I (34) 

Reducing his framework to only two dimensions, he has considered the operator 
0 defined by 

(35) 

where the imaginary number i represents the rotation operator of angle 1t,'2. 
I think that R. DUTHEIL has chosen the T operator with definition 31, because it 
contains the operator O where it applies to one time coordinate x0 and one space 
coordinate x 1. The operator O belongs to the complex rotation group S0(2;C), and there 

are two dimensional Lorentz sub-groups €~ e[ which preserves their associated 

metrics having respectively the signatures (+-)and(-+) . Finally considering the 
transformation of a two dimensional subluminal referential frame (ORF-2) into a two 
dimensional superluminal referential frame (TRF-2), with the rotation operator O of 
angle n/2, such as 
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(36) 

R. DUTHEIL has introduced an IMF from an intermediate rotation position between an 
ORF and a TRF, which has a rotation angle ofn/4 

(37) 

so with a mere algebraic method he has deduced a two dimensional IMF. Using the 
intermediate variables a0

, a1 
ao = / f xo 

a1 = / 1x1 

and taking the complex conjugate of a1 (the ORF coordinate x 1 is real) 

a1* = e-1f x1 

he has writtt:n the following complex expression 

a O + a 1 
* = J2 ( et + x) + -~ ( et - x) 

in which the real components are the coordinates of a two dimensional IMF 
, = J(et +x) 
(= }i(et-x) 

In this he has introduced two light cone coordinates. 

2.3 Discussion of the second definition of an IMF 

(38) 

(39) 

(40) 

(41) 

Because of the properties of the S0(2;C) group, R. DUTHEIL has considered that 
infinite momentum frames have only two inherent light cone coordinates. 

R. DUTHEIL has considered ,, ( and ,·, (' as being inherent coordinates, but from 
the example of K➔K' transformation given above, it is clear that their definition as 
linear combinations oft, x and t ', x ', in equations 63, 64 is related to the Lorentz 
transformation in equation 5, i.e. to the translation ofK' along the x axis. So the ,, ;, , ·, 
(' coordinates are not inherent to the IMF, but they are only inherent to the translation 
direction ofK' along the x axis ofK. Taking the two light cone coordinates ,, ( defined 
by 

, = J(et +x) 
( = ,I (ct-x) 

R. DUIHEIL has added the two ordinary coordinates of K and K' 
y' = y 

=' == 

(42) 

(43) 

to complete the IMF to four coordinates. So the referential Q( ,,(,.y,.:) which he used is a 
just mixture of two IMF cordinates ( r,Q and two ORF coordinates (y,.:). In the 
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definition of such a referential Q( r,c;J',z) one space axis has been privileged (here the x 
axis) by the K ➔ K' translation. 

No space direction should be privileged, because physical space is supposed to be 
isotropic. I think that the three space coordinates should be similarly considered in an 
IMF. So the R. DUTHEIL' s method is not able to provide a four dimensional IMF, and it 
is limited to the framework of the special theory of Relativity. 

2.4 Third definition of an infinite momentum frame 

R. DUTHEIL and G. NIBART [3] have proposed to generalize the concept of IMF to 
four light cone coordinates, taking the new coordinate (' notation as follows 

e = r q1 = ( (44) 

They have named « IMF-2 » any infinite momentum frame having only two light 
cone coordinates, so the coordinates system { r,Qand the referential Q( r,(J',z) are both 
IMF-2. 

They have shown [3] it is possible to define an infinite momentum frame having 
four light cone coordinates from any ORF ( or from any TRF), which have an equivalent 
metrics. They have named it « IMF-4 » and they have given an example where the t

coordinate is a linear combination of the ORF space coordinates (with the same weight) 
and of the ORF time coordinate. They also have given an example ofan « IMF-4 » built 
from a TRF. 

2.5 Discussion of the third definition of an IMF 

It is possible to define a four dimensional infinite momentum frame (IMF-4) in 
relation to both an ORF and a TRF [3]. However all IMF-4 transfonnations are not 
Lorentz invariant, because ORF and TRF correspond to two different Lorentz groups. 

R. DUTHEIL has reduced his IMF framework to only two dimensions to satisfy the 
Lorentz invariance requirement. So the generaliz.ation of an IMF to four dimensions is 
in contradiction with this requirement. 

A two dimensional IMF has been deduced from the transformation of a two 
dimensional ORF into a two dimensional TRF, represented by the equation 36 which 
produces a space time permutation. 

The duality between space and time in extending the usual Lorentz group to 
superluminal transformations is well known. The generaliz.ation of infinite momentum 
frames to more than two space dimensions cannot avoid this problem. A transformation 
of a four dimensional ORF into a four dimensional TRF would produce a similar space 
time permutation, which is not possible because of the mismatch between the number 
of space and time dimensions. 

A six dimensional space-time manifold has been proposed by several authors 
[8,9, 10] to extend the Lorentz transfonnation to superluminal velocities, and L. 
MARCHILDON, A. F. ANTIPPA, and A. E. EVERETT [11] have analyzed the proposals of 
these authors. A timeless six dimensional manifold has been proposed by G. NIBART 
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[12] to build a relativistic model of a particle antiparticle pair with relativist E.P.R. 
correlations. 

In a next work we will introduce a six dimensional infinite momentum frame. But 
before doing the generalization to six dimensions, we first have to propose a new 
definition ofan infinite momentum frame (see section 4). 

3 Relativist Transformations of an Infinite Momentum Frame 
We call « IMF Transformation» a transformation of an infinite momentum frame 

which corresponds to either a subluminal Lorentz transformation or a superluminal 
Lorentz transformation. It is always possible to deduce expressions of an IMF 
transformation from a subluminal or superluminal Lorentz transformation, if we know 
the defintion of the IMF coordinates. Here we give an example of how we can deduce 
an IMF-2 transformation from a special Lorentz transformation, in both the subluminal 
case and the superluminal case. 

3.1 The two metrics of an IMF-2 

From the two light cone coordinates defined in equation 42 we can write the two 
ORF coordinates as 

(45) 

and we obtain a relation between the interval in IMF-2 and in ORF-2 
c2t 2 -x2 = 2-rs (46) 

so we can deduce the corresponding metrics ofan IMF-2 
d.s2 = c2 dt 2 

- dx 2 = 2 d, ds (47) 

Similarly R. DITTHEIL has deduced [2] the tachyonic coordinates of a TRF-2 from 
the tachyonic light cone coordinates 

et= ,}(r+~) 
x = ,} (?- r) 

(48) 

and he has shown that the tachyonic light cone coordinates can be related to the same 
IMF-2 with: 

r=s 
s= -, 

so he has deduced the corresponding tachyonic metrics in the IMF-2 

x2-c212 =-2r?=2,; 
i.e. 
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3.2 The timelike region and the spacelike region in an IMF-2 

A subluminal velocity related to an ORF-2 has a timelike interval, such as 

c2t 2 -x2 >0 <=> 2,(>0 (52) 

so the corresponding timelike region in an IMF-2 is defined by the condition 
r > 0 and ( > 0 (53) 

or the condition 
r < 0 and ( < 0 (54) 

A superluminal velocity related to a TRF-2 has a spacelike interval, such as 

x2 - c2t 2 >0 <=> -2r?>O (55) 

so the corresponding spacelike region in an IMF-2 is defined by the condition 

r > 0 and ( < 0 (56) 

or the condition 

r < O and (> 0 (57) 

It is very strange that R. DUTHEIL has restricted the timelike region of an IMF-2 to 
the only condition 53 where the two light cone coordinates are both positive. Similarly 
R. DUTHEIL has strangely restricted the spacelike region of an IMF-2 to the only 
condition 56 where the tachyonic r coordinate is positive. He did not explain why he 
has rejected conditions 54 and 56, but I think it is to be related to the time arrow. 

Accoi;ding to equation 49, the conditions 56 and 57 are respectively equivalent to 
r > 0 and ( > 0 (58) 

or 
r < 0 and ( < 0 (59) 

This shows that the region of an IMF-2 corresponding to the spacelike region 
represented by a TRF-2 is identical to the region of the IMF-2 corresponding to the 
timelike region represented by an ORF-2. So in an IMF-2 timelike and spacelike regions 
are not separated. 

3.3 Subluminal IMF-2 transformations 

We can easily deduce an IMF-2 transformation equation from an expression of a 
subluminal special Lorentz transformation. Let us consider again the system of 
equations 5 

x' = xcos0+ ictsin0 

et'= i xsin0+ctcos0 
Adding and subtracting them we get the equivalent system of equations 

x' +et'= (x + ctXcos0+ isin 0) 

x'-ct' =(x-ctXcos0-isin0) 

From equations 7 we obtain the following system of equations 
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1-/3 
cos0+isin0= ~ 

-.;1- /32 

cos0-isin0= R" 
1-/32 

(62) 

The system of equations 61 contain two light cone coordinates defined from K as 

and from K' as 

r = J(ct+x) 
( = ---k-(ct - x) 

,2 

r' = ,~(et'+ x') 
;

1 = ,~(ct'-x') 

(63) 

(64) 

thus the subluminal special Lorentz transformation of an IMF-2 can be deduced from 
the system of equations 61 , i.e. 

which are equivalent to 

1-/J r'=r---
✓l-/32 

(' = ( l+ /3 
✓1-/32 

.Jl-/3 
r' = r .Jl + /3 

(' == ,.J1 + /3 
.J1 - /3 

because 1-/Jand l+/Jare always positive. 

(65) 

(66) 

(67) 

(68) 

Remark: we see that the relativist singularity has not been removed, but in an 
IMF-2 the both coordinates r', ;· are not simultaneously divergent. When taking the 
subluminal limit f3 ➔ + 1, r' is not divergent as shown below 

r' ➔ O 

(' ➔ ±oo 

and when taking the limit f3 ➔ -1 , ;· is not divergent as shown below 

r' ➔ ±oo 

(' ➔ 0 

3.4 Superluminal IMF-2 transformation 

(69) 

(70) 

We can similarly deduce an IMF-2 transformation equation from an expression of 
a superluminal special Lorentz transformation. Let us consider a mass particle related to 
its proper tachyonic referential frame K , and an other superluminal referential frame 
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K' moving along the x axis with a velocity v which is a little greater than the light 
velocity. 

The superluminal special Lorentz transfonnation K ➔ K' may be represented by 
complex rotation equations which are similar to equations system 5 ( except the tilda 
notation of tachyonic coordinates) 

x' = x cos<f) + i et sinq> 

et' = ixsinrp+et cosrp 

with a complex rotation defined by the following equations 

where 

and having an imaginary angle q> 

- v /3= -
e 

/3 

rp = Arctg( j) 

(71) 

(72) 

(73) 

(74) 

Remark: In equations 72 the cosinus depends on the sign of /J , i.e. it depends on the 

direction of the referential K' . 
Adding and subtracting equations 72 we get (similarly to equations 61) 

x' +et'= (x +ctXcosq>+isinq>) 

x' - et'= (x - ctX cosrp-isinrp) 

From equations 72 we obtain the following equations system 

cosrp+isinrp= ~ 
/32 - 1 

. /3+ 1 
cos rp - ism q, = ~ 

,J/32 - 1 

(75) 

(76) 

The equations 75 contain implicitly two light cone coordinates defined from K as 

and from K' as 

r = ,~(et +x) 
?= ,12 (eT -x) 

r' = ,12 (et' +x') 
;;, = ,\1 (et' -x') 
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thus the superluminal special Lorentz transformation can be expressed from equation 
75, in an IMF-2 as 

- , - /J-1 
r = r .Jp2 - 1 

(' =' ~+ 1 .Jp2-1 

(79) 

(80) 

Remark: we see that the relativist singularity has not been removed, but in an 

IMF-2 the both coordinates r' , (' are not simultaneously divergent. When taking the 

superluminal limit /J ➔ + 1 , we have 
- -
/J>l ⇒ /J-l>O /J+l>O (81) 

and then 

(82) 

so r' is not divergent. When taking the superluminal limit /J ➔ -1 , we have 
- - -
/J<-1 ⇒ /J+l<O JJ-1<0 (83) 

and then 

(84) 

so ~• is not divergent. 

3.5 Conclusion about relativist transformations of IMF-2 

While special Lorentz transformations of ordinary referential frames (ORF) or 
tachyonic referential frames (TRF) are complex rotations, the corresponding relativist 
transformations of infinite momentum frames appear to be a change of scale: 
coordinates are just multiplied by a function of the relative velocity. 

4 A new concept of an infinite momentum frame 
We propose here to generalize the concept of IMF to any number of dimensions, 

with a new definition of infinite momentum frames. 

171 



4.1 Preliminary considerations about IMF-2 metrics 

We have shown in section 3.1 that the IMF-2 and ORF-2 metrics are such as 

ds2 = c2dt 2 -dx2 = 2 dr dt; (85) 

We may write the IMF-2 metrics as 

ds2 = 17iJ d,t d~ j (86) 

with the following tensor notation of the IMF-2 coordinates 
~ o = r c;' = t; (87) 

so we can see that the IMF-2 metrics tensor has a null diagonal 

'l ;t = ( ~ ~) (88) 

and that the two basis vectors & 0 , & 1 have a null square: 

Eo · &o ='loo = 0 

&1 ·&1 = 7711 =0 
Consequently all basis vectors of an IMF-2 are isotropic. 

4.2 A new definition of an infinite momentum frame 

(89) 

We may define an infinite momentum frame as a system of any number of light 
cone coordinates. The most general equation of a light cone with any number of 
dimensions, is 

~ 2 =0 ~~ 
All basis vectors of such an IMF belong to the light cone, i.e. all basis vectors are 
isotropic, thus the metrics tensor has a null diagonal, as shown below 

&µ ·&µ = 1J µµ = 0 (µ = 0,1, .. . n) (9 1) 

For example we may propose the following IMF-4 metrics tensor corresponding 
to a four dimensional pseudo Euclidean space, and it might be 

,,µ ., =[: H ~] (92) 

l O O 0 

These considerations has led us to propose the following definition: An infinite 
momentum frame is a referential frame generated by any number of isotropic basis 
vectors. 

Remarks: We may imagine an IMF-n with more than 4 dimensions. All IMF 
coordinate axis have a« space-time nature». 
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5 A Relativist Quantum Theory in Infinite Momentum Frames 

5.1 The Klein, Gordon and Fock equations in IMF-2 

Considering the momentum p of the timelike region m an ORF and the 
momentum ;r in the corresponding IMF-2, R. DUTHEIL has shown [2] that in the 
timelike region we have 

p o2 - p 2 = !loll+ 1l ,r° (93 ) 

then he has deduced [2] the following Klein, Gordon and Fock equation of a subluminal 
boson 

( t\o~ + a~or )'1' = :l 'I' 
where the Klein, Gordon and Fock constant is 

(94) 

m0c x=- (95) 
ti 

and he has deduced {2] the Klein, Gordon and Fock equation of a superluminal boson in 
the same IMF-2 

(96) 

5.2 The Klein, Gordon and Fock equations in IMF-4 

R. DUTHEIL did not propose a generalization of the Klein, Gordon and Fock 
equations to a four dimensional infinite momentum frame having (IMF-4). Using an 
IMF-4 metrics tensor, for example the metrics tensor (equation 92), we may generalize 
the Klein, Gordon and Fock equations to four dimensions, so we have for subluminal 
bosons 

(97) 

and for superluminal bosons 

( 1/µv O µo,, + X2 )If (98) 

using the coordinates t;' of the same IMF-4. 

5.3 The Dirac equations in IMF-2 

Applying the classical method of linearization to the Klein, Gordon and Fock 
equation 94, R. DUTHEIL has deduced [2] the following Dirac equation of a subluminal 
fermion 

(y oOo + YA - x)v-r = 0 (99) 

and also the Dirac equation of a superluminal fermion in the same IMF-2 

(iy oOo + iy A + x),p = 0 (JOO) 

or 
( 101) 

173 



where x is the Klein, Gordon and Fock constant ( equation 95) and where the Dirac 
matrix ro, n in IMF-2 satisfy the relation 

r 1rk +r*r1 =2TJ1* (J,k=0,l) (102) 

with the IMF-2 metrics tensor expressed by equation 88. 
To show that a superluminal fermion is equivalent to an anti-fermion having an 

opposite electric charge [3] , and to show that a pair of a superluminal fennion and a 
subluminal fennion is equivalent to a photon [2,4,5], R. DUTHEIL has used the Dirac 
equations 99, 101 expressed in an in IMF-2. His demonstration is not very pertinent, 
because an electromagnetic field cannot be considered within a two dimensional space 
(IMF-2) and thus his demonstration of the fennion equivalence is only valid without 
electromagnetic field. 

5.4 The Dirac equations in IMF-4 

To generalize the Dirac equations to four dimensions, R. DUTIIEIL has later 
proposed [4] to use a « curvilinear coordinates system» having the following metrics 

ds 2 = 2d~0 1Jo; d~; (103) 

he has obtained Dirac equations generalized to four dimensions, one for a subluminal 
fermion 

(r _!l_ - xJ f// = o 
µ D~µ 

and one for a superluminal fermion 

( 
D . )-r µ D~ µ - i X f// = 0 

where D represents the covariant derivatives. 

(104) 

(105) 

Considering the coordinates tensor notation 87, we see that the metrics defined by 
the equation 103 is a generalization of the IMF-2 metrics to four dimensions, but R. 
DUTHEIL did not present his « curvilinear coordinates system » as being an infinite 
momentum frame. 
Moreover he did not demonstrate that the Dirac equations 104, 105 are Lorentz 
invariant in the same« curvilinear coordinates system». 

The generalization of the Dirac equations to IMF-4 with our method would not 
require the introduction of covariant derivatives. However the equation l 02 can be 
extended to an IMF-4 as 

r µr V + r ,,r µ = 2TJ µ,, (µ, v = 0,1,2,3) c106) 

Remark: in the framework of the special theory of Relativity the IMF metrics 
tensor T}µv is just composed of constants as -1, 0, +l, but in the framework of the 
general theory of Relativity, the components of the IMF metrics tensor 1Jµv are IMF 
gravitation potentials. 
So the question arises: should Dirac matrix depend on the gravitation field ? 
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6 Conclusion 
Infinite momentum frames (IMF) are intrinsic referential frames of photons, and 

they can be used to describe simultaneously subluminal particles, superluminal particles 
and photons in the same referential frame. 

The introdution of the IMF metrics tensor in the Klein, Gordon and Fock 
equations, the relation between IMF metrics tensor and the IMF Dirac matrix allows us 
to expect a future generalization of the relativist quantum theory within the framework 
of the general theory ofRelativity. 

According to a more general concept, an infinite momentum frame with any 
number of dimensions should be buitlt on isotropic basis vectors. Using this definition 
in a next work, we will introduce a six dimensional infinite momentum frame (IMF-6) 
in relation to the usual ORF-4 and the tachyonic TRF-4. 
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