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Abstract

A method to sort out temporal correlations in financial data within the
Detrended Fluctuation Analysis (DFA) statistical method is used. Both lin-
ear and cubic detrendings are considered. Our findings are surprisingly sim-
ilar to those for DNA sequences which appeared as a mosaic of coding and
non-coding patches.
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1. Introduction

Recently, there have been several reports that financial fluctuations may
display long-range power-law correlations [1] similarly to turbulent [2] and
self-organized critical systems [3]. If this is true, this should allow physicists
to dream about economy rnodeling and work on predictability. However, oth-
ers reported that economic fluctuations have features close to decorrelated
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sequences [4, 5]. Different statistical techniques have been used up to now:

wavelets [6], Lévy statistics [1, 4, 7], discrete scale invariance [8], Brownian

motion [5], a.s.o. We present here a method to sort out temporal corre-
lations in financial data within lhe Detrendeil Fluchtation Anolysis (DFA)
statistical method [9]. The latter has demonstrated its usefulness for the
investigations of long-range power-law correlations in DNA sequences [10]
as might be searched for in economics. Our findings ale surprisingly simi-
lar to those for DNA sequences which appeared as a mosaic of coding and
non-coding potches lLÛl.

2. Linear and Cubic Detrending

The DFA technique consists in dividing a random variable sequence y(zr)
of length .lV into /V/t nonoverlapping boxes, each containing t points. Then,
the local trend in each box is defined. Two cases will be hereby examined.
Usually a linear trend z(n.) is assumed in a box, as

z ( n ) : a n l b , (1 )

such that the parameters a and ô are estimated through a linear least-square
fit of the data points in that box. The process is repeated for all boxes. The
detrended fluctuation function .F'(t) is then calculated following

F(t12 :: jH (y(,) -,(n))', k :  o, 1,2,. . .  , (T - t l  Q)

Averaging .F(t) over the Nlt intervals gives the fluctuations (.F(t)) as a func-
tion of t. If the y(rr.) data are random uncorrelated variables or short range
correlated variables, the behavior is expected to be a power law

(F) - r' (3)

with an exponent L12 Ïgl. An exponenf o * t12 in a certain range of t values
implies the existence of long-range correlations in that time interval as e.g.
in the ftactional Brownian motion [11]. Correlations and anticorrelations
correspond to a ) LlZ and a < LlZ respectively. In fact, the exponent o is
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the Hurst exponent often denoted I/ in the literature. In terms of the Hurst
exponent .f/ related to the spectral exponent p of. a signal by g : 2H + L, we
can talk about pink noise or black noise depending whether H < rl2 ot H >
Ll2. Black noise is related to long-memory effects (persistence), and pink
noise to anti-persistence. One has often found that most natural plocesses
are persistent, with long-memory effects. Pink noise (H < rlz) occurs when
relaxation and dissipative processes are dominant over the external influences
and perturbations.

Notice that it can happen that in a specific box, the linear trend might be
way-off from the overall intuitive trend, henceforth shorter scale fluctuations
might be missed if the box size becomes quite larger than the intrinsic short
time fluctuation scale of the signal. Therefore it is of interest to consider
another assumed trend, like a cubic one

z ( n ) :  c n ' g  + d , o ' + e n *  f  ,  ( 4 )

In the following we will call r1(t) and Iî3(t) respectively the fluctuation func-
tions (Eq.(2)) derived from the linear (1) or cubic (3) trend, and similarly
for the other functions of interest when appropriate.

The main advantages of the DFA over other techniques like Fourier trans-
form, or R/S methods [12, 13J are that (i) local and large scale trends are
avoided, and (ii) local correlations can be easily probed as ïre will see be-
low. In economic data like stock exchange and currency fluctuations, long or
short scale trends are o posterdori obvious and are of common evidence. The
DFA method allows one to avoid such trend effects which can be considered
as the envelope of the signal and mask interesting details. Thus, we expect
that DFA will allow a better understanding of apparently complex economic
signals [13, 14].

3. USD/DEM evolution

We have considered the economic evolution of the DEM/USD currency
exchange rate from Jan. 1, 1980 til l oct. lb, 1gg6. This represents.l{ : 4lg3
data points. The week-ends and holidays are obviously not considered even
though political events can occur during week-ends. The jagged evolution of
the DEM/USD currency is presented in Figure 1. At the time scale of the
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figure, large trends are clearly observed as e.g. the devaluation of the USD
between 1985 and 1988.

?.s

Figure 1 - The jagged evolution of the USD/DEM currency ex-
change rate from January lst, 1980 to October 15th, 1996 repre-
senting 4383 data points.

In Figure 2, a log-log plot of the lluctuation functions (.F1(t)) and (.F3(t))
are shown for the whole data of Figure 1. The dashed line is the expected
fluctuation fonction for the Brownian motion. The (r'1(t)) function is very
close to a power law with an exponent a1 : 0.54 * 0.01 holding over two
decades. in time, i.e. from about one week to about 2 years. This results
clearly support the existence oflong-range power-law correlations iir currency
fluctuations whoteaer the trend. The (,lr3(t)) function is also close to a power
law with an exponent ca : 0.56 + 0.01. The values of these exponents are
dilferent but they are significatively difierent from the Brownian motion case
(a: Llz). These power laws are signatures of a propagation of information
across the economic system during very long times. For time scales above
2 years, a crossover is however observed and is indicated by an arrow. This
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crossover suggests that correlated sequences have a characteristic duration
of ca. 2 years along the whole currency exchange market evolution at least
for the case studied here over 16 years.

t

Figure 2 - The log-log plot of the (tr'1(t)) and (f'r(r)) fluctuation
functions showing time scale invariance from one week to one year.
The crossovers are denoted by amows. The dashed line crossing
the graph is the Brownian motion theoretical case, i.e. a power
law with an exponent l /2.

Conversely, it is also of interest to check whether there are decorrelated
sequences. In order to prove or probe the existence of. correlated and decor-
related fi.nancial sequences, we lirst construct a so-called observation box (a
probe) of "length" 2 year placed at the beginning of the data, and we calcu-
late a1 and o3 for the data contained in that box. Then, .we move this box
by 20 data points (i.e. 4 weeks) toward the right along the time sequence
and again calculate a. Iterating this procedure for the 1980-1996 evolution
of the USD/DEM ratio, we obtain a "local measurement" of the degree of
"long-range correlations". The results are shown in Figure 3 at various typ-
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ical times. Even within (not indicated) etrot bars, we clearly observe that
the a exponent values much vary with the date. The c1 exponent value is
mostly above Lf2. However, both around spring 1983 and spring 1987, the
exponent a1 has a sharp minimum below ll2. The second event is the rnost
dramatic one. The values of o3 are not systematically lower nor higher than
those of c1. Values are intertwinned. They are however very close to each
other, and both alpha-onves exhibit the same features.

It should be noted that we have tested both linear and cubic detrendings
on well defined self-affine functions like fractional Brownian motions. 

'We

found that the cubic detrending provides the best estimate of c for these
artificial data. The fact that a3 presents the same features that c1 rneans
that the a variations in Figure 3 are significative.
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Figure 3 - The evolution of the local values of a1 and ca estimated
with the DFA technique for boxes of 2 year size.
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4. Conclusion

The presence of persistent and antipersistent sequences is similar to what
is also observed along DNA sequences where the a exponent has sharp vari-
ations [10]. It drops below LlZin so-called non-coding regions but remains
above Ll2in coding regions. By analogy, our findings suggest that for some
yet unknown reason currency markets have different activity regions not im-
mediately seen on signals like the exchange currency ones discussed here
above. Just like for DNA, currency markets can loose control over the in-
fonnotion propogotion at specific moments. It should be noted that sharp
variations in sequences observed around 1983 and 1g8? respectively were not
directly visible from the data in Figure 1 and would likely be missed by R/S
and Fourier analysis [13].

Therefore the above features can be tentatively put into perspective with
respect to economic events [15] following political events and/or some panic
storm spreading over financial markets. The 1983-84 drop follows the Volker
chairmanship at the Federal Reserae Bank and, subsequent panic. The a turn
over, rebound and steady value from 1985 tiU lgBZ indicates the "need for
control" resulting in the so-called Plaza agreernentwhile the lgBZ sharp drop
can be related to the so-called " accord du Louare", and the sudden minimum
and turn over to the Deutsche Bank anomalous interest rates increase.

The c behavior thus seems to show quantitatively that after a policy move
for better control and in order to avoid panic or to heal a crisis, the rmarket,'

nevertheless searches for the best subtle holes in the regulation in order to
avoid the most severe constraints, then slides oI[ the policy main stream,
and sets out of control before new rules are decided upon. The detrending
independent-a value since 1993 likely indicates a difficult cahn.

Irr summary, long-range power law correlations and anticorrelations have
been shown to occur in economic systems. Moreover, we have quantified that
some sequences appear where the economic system looses some control over
information propagation. It seems that these features can be associated with
real economic events and policies. Cubic and linear detrendings provide close
quantitative results.

comments by J.Pirard, P.Praet, A.Pekalski, D.stauffer and H.E.stanley
are greatly appreciated. The "Générale de Banque" of Belgium [lbJ provided
the data.
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