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Abstract

This paper presents a synchronization-based, multi-process computational model of anticipatory
systems called the Phase Web. It describes a self-organizing paradigm that explicitly recognizes
and exploits the existence of a boundary between inside and outside, accepts and exploits
intentionality, and uses explicit self-reference to describe eg. auto-poiesis. The model explicitly
connects computation to a discrete Clifford algebraic formalization that is in turn extended into
homology and co-homology, wherein the recursive nature of objects and boundaries becomes
apparent and itself subject to hierarchical recursion. Topsy, a computer program embodying
the Phase Web, is currently being readied for release.
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poiesis, conservation, invariant, anticipatory, homology, co-homology, twisted isomorphism,
phase web paradigm, Topsy, reductionism, emergence.

Introduction

Anticipatory systems (Rosen, 1985) display a number of properties that, togetheç differentiate
them strongly from other kinds of systems:

o They possess pdrtJ that interact locally to form a coherently behaving whole.

o The way in which these parts interact differ widely from system to system in detail, yet
wholes with very different parts seem nevertheless to resemble each other qua their very
wholeness.

o It is impossible to ignore the fact that such systems are situated in a surrounding envi-
ronment. Indeed, their interaction with their environment is so integral to what they are
and do makes their very situatedness a defining characteristic.

o A critical behavior shared by these wholes is the ability to anticipate changes in their
surrounding environment and react in a way that (hopefully) ensures their continuing
existence, ie. auto-poiesis.

Attempting to get a handle on anticipatory systems compatationally can mean different things
to different people.
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Suppose, for example, that the mathematical description of the phase web described in $2 were
programmed directly, with all the do.loops, data structures, and algorithms this traditionally

implies. While the result might be a good simulation of an anticipatory a system, I personally

would be dissatisfied because I seek a system description which ày the very nature of the

computation lrsefwould produce actualbehavior. That is, while the output of such a traditional
progftrm is all well and good, the detour through an a priori mathematical description obscures
both the mechanism and the process by which this output is produced.

Another way to say this is that for me, computation is just as fundamental as mathematics,
but the two have different strengths. The strength of a computational description is that it

must exhibit actual mechanisms and the processes engendered thereby. I seek a computational
formulation that can be seen to inevitably produce systems with the properties listed above,

without any extemal or a priori guiding hand, indeed, with no nèed to appeal to mechanisms

beyond what it itself embodies.

This is a tall order! However, I believe I have succeeded to a reasonable extent, not least

because the resulting parely computational system- descriptive apparatus'has (ironically, in

view of the preceding comments) a very clean mathematical formulation (presented in $2).
Those familiar with the various attempts to describe computation mathematically know that

the two are fractious bedmates, so I view this denoument as a sign that there is something very

right about it.

In contrast to many, the approach presented here emphasiz,es structure so strongly that the

algorithmic component that for most people is the sine qua non of computation is nearly non-

existent. This emphasis is ultimately the reason why the approach offered here - called the
phase web paradigm- differs from all otlers I am familiar with, and correspondingly, why its

mathematics comes out so differently (algebraic topology, namely, rather than logic).

But how can one even have computation without an 'algorithm'?! The answer is that the

classical concept of an algorithm is a specification of a process that is to take place when the

algorithm is unrolled into time. The phase web paradigm is however focused entirely on the

process aspect, and thereby essentially obviates the need for the a prtori existence of a defining

algorithm. One might comparc this to the theory of evolution based on natural selection: this

is a process-level theory for which the existence of some a prtori algorithm is problematic.

Of course, one still writes programs, but in pure process terms. However, since an antici-
patory system in general grows/learns, this programming is ultimately sculptural rather than

specifi cational in character.

The next section introduces the basic computational model, which is described at greater length

in [www]. The mathematical translation of this computational model follows, and the paper

closes by relating all this back to anticipatory systems and auto-poiesis.
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1 The Computational Model

The goal of this section is to sketch the essentials of the phase web's computational model.

The principal problem computer science has faced over the last two decades is the digestion
of the phenomenon called "parallelism", and virtually all contemporary research is colored
by issues arising from it. This means that we are already in a decidedly process-oriented
context. The computational concepts I use - synchronization, co-occunence, exclusion - axe
well-established and used by researchers in the field. I prefer the term "concurrency" to
"parallelism" because the latter is tainted by associations to interleaving the events constituting
several parallel processes to achieve a formally sequential process (equivalent to disassembling
a living cell to form a long end-to-end chain of molecules, and then not even realizing that it's
dead).

I have been particularly concerned with what are called distributed systems, that is, systems
which - like an ant hill - exhibit globally coherent behavior via solely local decision-making on
the part of its constituents. I have been looking for some small set of seed concepts out of which
any kind of "ant hill" may be built. My goal all along has been to apply the understanding
gained from this search to construct an entity that can learn from its experiences and behave in
an increasingly sophisticated way on the basis thereof.

As a starting seed" it appea$ from very general considerations that a necessary condition for
the ability to profit from experience is the ability to draw distinctions. In a sequential context,
this demand is met by the if-then-else construction or equivalent. In the concurrent context
of the present work, the fundamental distinction I have cooked everything down to is that
between occur together versus exclude each other. That is, can two situations co-occur in
experience versus they cannot self-consistently do so. (The following sub-section therefore
treats the computational mechanism - synchronization - that addresses such relationships.) The
overall approach is to express knowledge of self and surround as patterns of exactly these two
complementary synchronization forms, and to express behavior via their manipulation.

The second seed concept is that of symmetry, by which I mean several things:

e A general symmetry I like is "outside is as inside", that is, the boundary separating what
is outside from what is inside an entity can be drawn aôitrarily, at least in principle. In
practice this means that the representation of intemal relationships should have the same
form as the representation of external relationships.

o A specialization of symmetry is the physicists' use of group-theoretical symmetries,
which cogently summarize such varied relationships as conservation laws, Lorentz (ie.
relativistic) invariance, and particle properties. It has turned out, though after the fact, as
it were, that the phase web's group symmetries are very much akin to those of quantum
mechanics.

o A third aspect of symmetry is the requirement that the form of a part of a whole is the
same as the form of the whole, that is, this is a hierarchical requirement. rWhen combined
with the ability to harvest observations (cf . occur together), which is a requirement
for learning from experience, this symmetry leads to the ability internally to explicitly
represent internal states and relationships, which in turn supplies the desired self-reflective
component.
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The third seed concept is that of goal-directed behavior, by which is meant that an entity can
explicitly represent to itself the goal or intention of its activity. It is hard to see how this
can be avoided; the teleological element it introduces is however elastic. Goals can be either
introduced from the outside or generated internally.

Besides the above concepts, the phase web paradigm is also the product of a two broad
constraints: 'mechanism' and what I call 'bio-engineering plausibility'. By mechanism is
meant that an a priori and purely mathematical explanation is eschewed in favor of a process-

oriented one: the former have been tried (eg. propositional calculus, Newtonian physics)

without particular success. The phase web and Topsy are, in contrast, pure process, and this is
what led to the mathematics we present later, and not the other way around.

By bio-engineering plausibility is meant that the mechanism proposed for a computationally-
based entity is profitably constrained by requiring that this mechanism can conceivably be
embodied in biological systems as well. After all, the best examples we have of anticipatory
systems are biological. The information flowing across the boundary from outside the organism

to inside should, for example, be concrete, should be 'grounded': molecular polarity, touch,
sound waves, retinal pixels, etc. It should perhaps also be noted that although a biological system

constantly creates and destroys its constituents, this is not modelled in the computational model

for reasons of efficiency (but coulrl otherwise be).

1.1 Synchronization

As late as the 1960's main-frame and mini-computers, and again with personal computers from

the early 1980's until recently, one had one computer on which ran one program. The coordi-

nation between this computer cum program complex and the outside world (ie. "inpuUoutput")

was deeply buried in technicalities and generally considered vastly uninteresting. However,

when one began, with the advent of timesharing, to harbor multiple programs on the same

machine, the issue - and profundity - of coordinating the interaction of otherwise independent

processes gradually became visible.

With multiple interacting processes, a number of new phenomena (at least to software people)

appeared, eg. concurrency, non-determinism, deadlock, communication; and as well, pair of

critical new c oncepts - sharable resources and the necessary mutual exclusion ofprocesses using

same. Issues concemed with process interaction and communication came into the foreground.

All of these things appear in the concurrent world, and none of them in the sequenrial world of

single non-interacting processes.

In order to deal with these things, it was found necessary to introduce a new primitive operation

into computin g, that of synchronization.r Viewing an 'event' as the execution of (say) a single

computer instruction, the role of computational synchronization is to allow the programmer to

specify before-after relationships between events belonging to otherwise separate processes.

This allows processes that otherwise are unknowing of each other's existence to cooperate.

Arbitrarily complex inter-process synchronization relationships can be built up from primitive

before-after relationships. Such synchronization is the foundation on which is built all modern

software: yourpersonal computer's operating system, local networks, airtraffrc control, on-line

lNot to be confused with the synchronization-via-photon-exchange exercises performed in relativistic analysis,

although the two are of course related.
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databases, the Internet and WWW, . . . everything

Synchronization possesses a singularly interesting property: it doesn't really compute anything!
It has the same relationship to the programs that invoke it as the pieces in a board game have
to the game itself. That is, synchronization relationships obtain while simultaneously being
conceptually invisible to the processes (ie. game actions) that depend on them. Thus, from
the point of view of a program, synchronization is not a value-retuming function at all, even
though textually it often looks like one. This may be clarified by the following.

Definition. An event is a change of state of a system. A process is a sequence of such events.

A sequential process with the states st --r s2 4 . . . -4 st is typically modelled by the
composition of functions: st: T{fç{. . ./z(/r(sr)) . . .). In a typical computational process,
the fi would be arithmetic operations. While this functional form suffrces when there is only
one process present (ie. traditional programming), analyzing systems with multiple processes
encourages the dissolution of this very tight functional binding of states to allow us to see the
intermediates states as pre-condition, event, post-condition. In this way, the fact that a given
pre- or post-condition can be caused in more than one way is more readily visible.

The concept of synchronization then allows us to express a multi-process computation explicitly
in terms of 'when' a given pre- or post-condition (ie. state) obtains, namely whether before or
after (or concurrent with) some other state. At this point, the functions fi begin to fade into
the background, since only their result is visible to other processes. The phase web paradigm
takes this to its logical extreme: its processes contain no arithmetic functions at all, but ratler
only sequences of synchronization operations.

The synchronization relationships between processes often possess an invariant, which I have
argued elsewhere (Manthey,l992) conesponds to a conservation law. Conservation laws are
group symmetries, not functions. This can be seen as the core of the phase web approach, in that
the structure, organization, and operation of a system is expressed in terms of such invariants.
We retum to this several times in the course of this paper.

By virtue of its before-after focus, synchronization also introduces an explicit notion of time,
which notion is automatically relative to events in other processes. It is however important to
understand that this 'time' is something much more primitive than that of ordinary usage. [So
any decent computational theory of physics must build such things as ordinary time (and space)
up from the relationships obtaining between otherwise isolated primitive synchronizations.
Conventional theories face their own version of this. I would say that I establish plausibility
that this is possible in the phase web.l

Let us now look at the mechanism by which synchronization is achieved.2 The two operations
wait and signal operate on an entity called a 'binary synchronizer' or 'binary semaphore',
denoted S. S contains a single bit of local state (denoted s) which can take on two mutually
exclusive values, denoted 1 and î. Define now wait and signal on S as follows:

2The story that follows is, at bottom, one of several possible standard computer science stories, colored by the
demands ofcontext.
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S.s=1 S.s=i

wait S.s +-
return

signal: return

continue
waiting

S.s <-
return

The effect of these definitions is to ensure that a given sequential computation (ie. process)

will stall (namely when s=i) until some other computation signals it (which sets s to 1).

Furthermore, a successful wait sets s to i, thus ensuring that no other computation can follow
'on its heels'. Notice that

no 'value' is returned by either operation. Rather, each computation simply proceeds on
its way after executing wait or signal as if nothing had happened;

no information is exchanged between waiting and signalling computations;

o the effect of the synchronization cannot be 'observed' locally (cf. preceding item)

but will be globatly visible as a correlation between events in the system as a whole
(Manthey,1992);

o the overall effect is to order events - namely the respective wait and signal events -

belonging to two differenr processes, such that (presuming s.s=i initially) the wait in the

one process will always be after the signal in the other. No more and no less.

These defrnitions are depicted in Figure l, in which So (open) corresponds to 1 and S" (closed)

corresponds to i. The two processes are denoted by the thick and thin lines, and the two stars

indicate their starting positions (=states). Following the lines and obeying the rules for wait and

signal, it it easily seen that state 1a,51 excludes state {â,b}. This state-oriented view is the one

we take in this paper.

Figure 1: Synchronization can ensure that certain stotes (here a,b) exclude othex Note that the

synchronization stich initially 'in' the rtShtrnost synchronizer, is consemed-

In the ûgure example, one cirn conceptualize the alternating mutual exclusion between the two

computations in terms of a single 'synchronization token' - I call it a 'stick' - that is passed

between them like a hot potato. Such a stick represents the fact that a particular state obtains.

At all times there is exactly one stick present in Figure 1, either in one of the semaphores or

implicitly owned by one of the computations by virtue of the state it is currently in. Such
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a conserved stick, which necessarily must move on a cyclic (ie. closed) path, reflects the
existence of a so-called resource invariant.3 [Incidentally, the term 'mutual exclusion' is often
abbreviated to'mutex'.1

The preceding discussion has concentrated on the matual exclusionary effects that can be
expressed by synchronization. To express the fact that two states can, in contrast, co-occur, vte
need only require that the initial state of the leftmost synchronizer in Figure I be open instead of
closed. This will allow the co-occurrence of states {a} and {b}, that is, the state {a,b} can now
occur. fReader exercise: show that this possibility is unstable or fleeting, and that the system
can decay into the earlier mutex form. This instability is the lot of the typical co-occurrence.l

We have thus seen that a synchronizer, which is an archetypic computational synchronization
mechanism, can be arrayed to express both of the distinctions we are after - co-occurrence and
exclusion. This particular pair of distinctions has the following properties:

o The elements of a co-occuffence arc indistinguishable in time, in that by definition they
occur neither before nor after each other. Thus, within a co-occurrence there is literallv
no 'otime" at all: a co-occurrence is a "now".

o Following Leibniz, co-occuning indistinguishables (namely, synchronization sticks) con-
tain the germ of the concept of space. More generally, co-occurrence can be extended to
encompass such static 'structural' aspects as form, situation, pattern, and the like.

o Two successive events of a given process by deûnition exclude each other.a Combining
this with viewing "time" as a l-l mapping of the events constituting a given computation
to a local time axis, we see that mutual exclusion contains the germ of sequential time.
In general, every process constitutes a local relative time frame, which frame obtains
meaning only via synchronization - that is, establishing before-after relationships - with
other processes' frames.

. Just as co-occurrence contains the germ of the concept of space, exclusion's time-like
aspect can be extended to express such dynamic concepts as action, transformation,
intention. and the like.

o As a pair, co-occurrence and exclusion over the same states exclude each other. thus
conceptually closing on each other and leading one to believe that they form a complete
and minimal set of distinctions.

With (Rosen, l99l) in mind, we next investigate a little more closely the relationship between
synchronization and Turing's model of computation.

!.2 Escaping from Tirring's Box

An implicit claim of the Turing model is that a single sequence of computational events can
capture all essential aspects of computation, that is, that computation consists only of state
tansformations. To refute this claim, consider the following gedanken experiment:

3(Manthey,l992) argues the interpretation of this concept as the computational analog of quantum number
conservation laws, and uses it to explain how the EPR 'paradox' is not a paradox at all.

4A consequence ofthe computational assumption ofdiscreteness. Once can rightly say that synchronization
is the handmaiden of discreteness.
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Co-occurrence

The coin demonstratian - Act I. A man stands infront of youwith both hands behind his back,
whilst you have one hand extended in front of you, palm up. You see the man rnove one hand

from behind his back and place a coin on your palm. He then removes the coin with his hand
and moves it back behind his back. After a brief pause, he again moves his hand from behind
his back, plnces what appears to be an identical coin in your palm, and removes it again in the
same way. He then aslcs you, " How many coins do I have ? " .

It is important at the outset to understand that the coins areformally identical: indistinguishable
in every respect. If you are not happy with this, replace them with electrons or geometric
points. Also, I am not trying nefariously to slide anything past you, dear reader, in my prose
formulation. What is at issue is the fact of indistinguishability, and I am simply trying to pose
a very simple situation where it is indistinguishability, and nothing else, that is in focus.

The indistinguishability of the coins now agreed, the most inclusive answer to the question is
"One or more than one", an answer that exhausts the universe of possibilities given what you
have seen, namely at least one coin. There being exactly two possibilities, the outcome can be
encoded in one bit of information. Put slightly differently, when you learn the answer to the
question, you will per force have received one bit of information.

The coin demonstration - Act II. The man now extends his hand andyou see that there are two
coins in it. [The coins are ofcourse identical.]

You now know that there are two coins, that is, you have received one bit of information. We

have now arrived at the final act in our little drama.

The coin demonstration - Act III. The man now aslcs, "Where did that bit of information come

from? ? "

Indeed, where did it come from?! Since the coins are indistinguishable, seeing them one at a

time will never yield an answer to the question. Rather, the bit originates in the simultaneous
presence ofthe nvo coins. We have called such a confluence aco-occurrence, and shown how
it is computed in the preceding section. In that a co-occuffence, by demonstration a bona
fide computational entity, is 'situational' rather than 'transformational', the assumption that

computation is purely transformational is shown to be false.

To very briefly dispose of the most common counter-arguments:

Q: Whatever you do, it can be simulated on a TM.
A: You can't 'simulate' co-occurrence sequentially, cf. the coin demo.

Q: But you can only check for co-occurrence sequentially - there's always a At.

A: This is a technological artifacfi think instead of constructive/destructive interference - a

phase difference between two wave states can be expressed in one bit.

Q: One can simply define a TM that operates on the two states as a whole, so the "problem"

disappears.
A: This amounts to an abstraction, which hierarchical shift changes the universe of discourse

but doesn't resolve the limitation, since one can ask this new TM to 'see' a co-occurrence at the

new level. In general, this type ofobjection dodges the central issue - what isthemechanism

by which indistiguishables can be observed.

Q: Co-occurrence is primitive in Petri nets, but these are equivalent to finite state automata.

A: The phase web in effect postulates growing Petri nets, both in nodes and connections. All

bets are then off.
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[At this juncture, I hasten to mention that we are dealing here with local simultaneity, so there
is no collision with relativity theory. Indeed, Feynman (Feynman,l965 p.63) argues from the
basic principle of relativity of motion, and thence Einstein locality,thatif anything is conserved,
it must be conserved locally; see also (Phipps),(Pope& Osborne).

I ought also to mention that I am well aware that Penrose (1989) has argued that computational
systems, not least parallel ditto, in principle cannot model quantum mechanics. However, I
believe that his argument, together with most research involving (namely) parallelism in my
own discipline, is subtly infected with the sequential mind-set, going back to Turing's analysis,
and truly, earlier. An analogy with the difference between Newtonian and20th century physics
is, to my mind, entirely defensible. The coin demonstration is my reply to such arguments,
which I do not then expect to hold.

Notice by the way how the matrix-based formulations of QM neatly get around the inherent
sequentiality of A - /(r)-style (ie. algorithmic) thinking, namely by the literal co-occurrence
of values in the vectors' and matrices' very layouts; and thereafter by how these values are
composed simultaneously (conceptually speaking) by matrix operations. Relating this now
back to the phase web paradigm, if we assign an (arbitrary) ordering on sensor names, then
co-occulTences become vectors, etc. Instead of the matrix route, I've taken the conceptually
compatible one of Clifford algebras, which are much more compact, elegant, and general, cf.
(Hestenes).

Returning to our discussion of Turing's model, we see from the coin demonstration that there
is information, computational information, available in the universe which in principle cannot
be obtained sequentially. Thus we have in the coin demonstration a compelling argument
that, at the very least, the Turing model of computation fails to capture all relevant aspects of
computation: it is semantically incomplete, and the thing it ultimately lacks is space-time -
space: co-occutrence, time: mutual exclusion. Synchronization operators represent precisely
the way computations can express space-time relationships and give them semantic content.

This can be taken further. Suppose we replace the coins by synchronization sticks, which
are surely indistinguishable. We can then say that the information received from observing
a co-occurrence is indicative of the fact that two states (represented by their sticks) do not
mutually exclude each other.

Co-Exclusion

The block demonstration. Imagine two 'places', p and q, each of which can contain a single
'block'. Each of the places is equipped with a senso,i s, respectively so, which can indicate the
presence or absence ofablock.

The sensors are the only sottce of information about the state of their respective places and are
assumed a priori to be independent of each other, though they may well be correlated. The
two states of a given sensor s are mutually exclusive, so a place is always either 'full', denoted
(arbitrarily) by s, or 'empty', denoted by 5; clearly, ,î : s.

Suppose there is a block on p and none on q. This will allow us to observe the co-occurrence
{to, 3o}. From this we leam that having a block on p does not exclude not having a block on q.
Suppose at sorne other instant (either before or after the preceding) we observe the opposite,
namely {.io, so}. We now leam that not having a block on p does not exclude having a block on
q. What con we conclu.de?
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First, it is important to realize that although the story is built around the co-occurences {"o, 3n}

and {,ip, so}, everything we say below applies equally to the 'dual' pair of co-occuûences

{sr, so} and {,ip, ,io}. After all, the desigaation of one of a sensor's two values as '-' is entirely

arbitrary. It is also important to realize that the places and blocks are story props: all we really

have is two two-valued sensors reflecting otherwise unknown goings on in the surrounding

environment. These sensors constitute the boundary between an entity and this environment.

Returning to the question posed, we know that so excludes .io and similarly so excludes 50.

Furthermore, we have observed the co-occurrence of so and 5n and vice versa. Since the

respective parts of one co-occurrence exclude their counterparts in the other co-occurrence (cf.

first sentence), we can conclude that the co-occunences as wholes exclude each other.

Take this now a step further. The transition sp -+ 5o is indicative of some action in the

environment, as is the reverse, 3o -+ so. The same applies to so. Perceive the transitions

sp ç 3p and so ++ 5o as two sequential computations, each of whose states consists of a single

value-altemating bit of information. By the independence of sensors, these two computations

are completely independent of each other. At the same time, the logic of the preceding

paragraph allows us to infer the existence of a third computation, a compound action, with the

state transition {so, 3o} <+ {5p, so}, denoted sr6o or equivalently Soso. In effect, by combining

in this way two single-bit computations to yield one two-bit computation, we have lifted our

conception of the actions performable by the environment to a new, higher, level of abstraction.

This inference we call co-exclusion, and can be applied to co-occurence pairs of any arity > 1

where at least two corresponding components have changed.s

Notice by the way that the same reasoning applies to {so, sq} <+ {5p, ,io}, denoted srso ot 6o60.

The two actions soso and Eoso are, not surprisingly, dual to each other, so co'exclusion on two

sensors can generato two distinct actions. [As will be seen later, co-excluding the orientations

of the duals produces a "complete" simplex at the next level up.l Like co-occurrence, an action

defined by co-exclusion also possesses an emergent property, in this case generally comparable

to spin |. fnis will be made clearer in the mathematical discussion below.

It sometimes troubles people that the elements of the co-occurrence (say) {sp, 3n} don't seem

at all indistinguishable - on the contrary, so is clearly distinct from 5o! The confusion is

understandable, and derives from confounding the value of a sensor with the synchronization

stick that represents the fact that the value (= process state) obtains for the moment. The

difference is clearer in the implementation, where the sticks for the respective states of the

sensor processes s, and sq ure represented by the tuples [p,1] and [q,i], which tuples can be

thought of as making precise ex'actly which statp's stick is being referred to. The processes

accessing such tuples in fact know a priori the exact form of the tuple (ie. state) they are

interested in, so no information is conveyed by accessing such tuples (which is as it should be,

since synchronization must not convey information between processes). Summa summarum,

the sensor values are not what are distinguished, but rather the sticks representing the associated

sensor-process states, and these sticks are indistinguishable in lime-

Finally, relative to t}te co-exclusion inference itself, it provides a very general (and novel

[Manthey US]) way for an entity to learn from experience: simply observe co-excluding co-

occurrences, since these then will represent an abstraction ofexperience. Furthermore, this is

screater arity is one way to exceed the binary limitation of *1 to obtain more nuance, though this will not

be described further here. Also, the term 'inference' is to be taken in its generic, not its formal logical, sense:

co-exclusion is more nearly inductive in its thrust.
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also neurologically plausible, in that co-occurring synapse firings combine to exceed the nerye's
threshold. The repetition required by neural systems to 'remember' is however short-circuited
in Topsy: once is enough.

1.3 How Topsy Works

The trick now is to tum all these observations about co-occurences and co-exclusion-based
actions into something that can run on a computer, ie. Topsy. First, a few general observations:

o Even though I have made much of true concurrency, it is entirely okay to implement
Topsy on an ordinary sequential computer, in that one may simply accept a certain At
slop in co-occulrence detection. This of course means that information deriving from
co-occurrences occurring at a granularity less than Àt will not be available - fair's fair.

o lt's useful to think of processes as interacting by communicating with each other via
some medium. In the case at hand, the medium is the computer's memory, but it could
be wires, micro-waves, QM's spooky action-at-adstance, or whatever. The determining
distinction for present purposes is, rather, whether a given communication reaches all
("broadcast") or just a few ("point-to-point") of the other processes. For the phase web
paradigm and hence Topsy, it is critical that the propagation regime b broadcast, so any
process that might be interested in a given synchronization stick, even only potentially,
will have access to it.

o A very neat way, due to (Raynal), to capture the distinction between truly distributed
system architectures and their imitators is that whereas the imitators implicitly interpret
a sent communication as a 'request' for information and a received communication as
a 'reply' containing same (which is really the same old sequential U : 1(x) paradigm
disguised as communication), processes inhabiting a truly distributed system interpret
a communication sent as an 'announcement' of local state (ie. a stick), and received
communications as other processes' ditto. Each process decides locally iflwhen/how it
willreacttotheannouncementsofotherprocesses. Therequest-replyregimeisinherently
centralizing, whereas the announceJisten regime is inherently distributive. It is a fact that
virtually all contemporary distributed systems are, in this sense, imitators, quite despite
appearances.

o I introduce the concept of a goal on-the-fly: a goal is an explicit expression of a state that
the computation in which it occurs desires to reach. Their use in co'rnputing goes back
to the 1960's in AI (if not earlier), and is also found in eg. the language Prolog. Goals
may seem unusual, since they are at best implicit in traditional 'imperative' languages
(and also in Prolog), but in fact there is nothing new here. Rather, the important thing
to note is that, by being explicit, goals allow a program using them to 'remember' what
it is supposed to be doing, and thus to recover from blind alleys. Furthermore, in being
explicit, they allow the program to reason about them, and thus eg. reason about and
rçsolve conflicts.

Topsy is formally connected to its environment by binary sensors and effectors, and these
together constitute its boundary. Sensors are simple two-state processes, which two states are
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denoted {s,5}. Effectors are viewed as things that influence one or more sensors, and are

therefore described as s -+ 3 and vice versa.

Each sensor state is, in the program, converted to a corresponding synchronization token, ie.

the state s is converted to the token (s, +1), and .Ç is converted to the token ("' -1). Similarly,

if an effector is in a state where it carry out the transformation s -+ ,î, this is converted to

the token (s, *1, -1). A goal for this effector would, similarly, be expressed by the token

(1, (s, *1), (s, -1)). In fact, all program states of interest are treated like this. In this way, all

ielàtionships between the processes constituting Topsy can be expressed via synchronization

relationships alone: there is, as it were, no "data"... just processes announcing and listening

for various synchronizational states.

Since an action is defined by co-excluding sensory processes, it expresses both a 'static' sensor-

based aspect - deriving from its defining pairof co-occurrences - and an 'active' transformational

aspect, àeriving from the complementarity of these same co-occurrence pairs.6 These two

urp""tr suggest how to build up a running action, namely divide the code for an action into a

half devoted to each side of the exclusion.

Thus, once the required pair ofco-excluding co-occulrences (to,5o) vs. (5o, sn) has occurred,

a muiti-threadedT-action embodying the two transitions (tr,3o) -+ (5p,sn) and (3o,so) -r

(so, So), is instantiated as a new entity; in a running Topsy system, there will be from hundreds

to'miiiions of these. One half of an action keys on the co-occurrence {sp,5o} and the other

on {.ip, so}. Since these co-occurrences exclude each other, only one of these halves will be

activated at a time. When one of these pre-conditions occurs, and at least one associated goal is

present, the action "wakes up". For example, when {sp, ,ir} obtains, along with (say) the goal
's, 

-+ Sp,the action fires and issues a goal for 3o + so as well. Thus a cascade of transformation

goals propagates and activates other actions.

Actions carried out at the boundary (effectors) affect the environment, causing the sensors

to reflect this new situation. This new situation bubbles up (see below) through the current

aggregration of actions, orienting them to the new realify, and old goals are accordingly retracted

unà n"* on", issued. The seeming anarchy is controlled by the invisible hand of the dynamically

nested synchronization invariants that the actions represent'

I.4 The Cycle HierarchY

'We 
have now at our disposal co-occurrences, co-exclusion and actions, and goals, and proceed

to show how these carrbe combined recursively to yield a hierarchical structure. The basic

claim here is that the ability to express the complexity and nuance of anticipatory behavior is

to be found via the growth and interplay of hierarchical relationships. This growth, of course,

occurs naturally and automatically via co-exclusion on sensory experiences.

The hierarchy is called the 'cycle hierarchy' because (l) the basic unit of its construction is

co-excluding processes - the lactions' described above - (2) whose internal conservation of

synchronizatiÀn sticks yields a basic cyclic structure (cf. Figure 1), (3) which cyclic structure

ngs''sincetraditionallya.thing'isnamelycharacterizedbyboth
aspects. One can also toy with the speculation that 'syntax' (ie. form) is based on the static, whereas 'semantics'

(ie. function) is based on the active.
7 A thread is CS jargon for a process possessing a relative minirnum of own state'
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is compounded recursively to yield a hierarchy of cycles of cycles.

The cycle hierarchy reflects aweakly redlctionistic stance, in that it requires that any higher level
phenomenon - which may well be emergent - be grounded in the structure and behavior of lower
Ievels. This is in contrast to the endemic 'subroutine call' or 'function composition' hierarchy
most people (especially scientists and engineers) unconsciously invoke in such discussions.
This latter hierarchy is strongly reductionistic, in that it allows no place for phenomena that
cannot be modelled by the sequential composition of lower level activities.s The basis of the
cycle hierarchy in co-occurrences offers an interesting alternative to the reductive question of
ultimate constituents, namely that one's hierarchical descent collides with the boundary to the
environment. One is thus ultimately referred to "the rest of the universe", a result reminiscent
of Leibniz's monadology.

Finally, although the following exegesis of the phase web's hierarchical structure presumes
that the hierarchy is well-nested, ie. like one pancake on top of another, this is by no means
necessary: co-exclusions can span over sensors from multiple levels (Figure 4a is a little
misleading in this respect). Indeed, cycles in the hierarchy itself can be used to express
self-propagating intemal processes.

This overall sketch of hierarchical properties now behind us, we show how such hierarchies
can be constructed in the first place. The basic insight is:

GrvgN that every action possesses an innate polarity based on the orientation of its
transformations, {sp, so} -+ {5p, so} vs. {,ip, 3o} -+ {so, so}, which distinction maps
to tl, co-occurences of such action polarities can themselves be subjected to the co-
exclusion inference, producing a meta-level of description/abstraction.

In other words, any action, whatever its arity, possesses two locally global states, corresponding
to the two possible transitions it can accomplish. These two states exclude each other, which
in turn means that this property of an action can be reflected in a two-valued sensor, a so-called
meta-sensor. [A meta-sensor is in other respects just like a primitive sensor.]

Meta-sensors themselves can be co-excluded to produce meta-actions, which in turn - being,
again, actions - possess the same polarities. These meta-polarities can again be mapped to a
meta-meta-sensor, which can again be co-excluded to produce meta-meta-actions, etc. The
result is a cycle hierarchy.

Notice that the two complementary co-occurrences whose co-exclusion defines an action also
neatly specify the respective pre- and post-conditions for that action - for example, when
the environment is in state {sp,3o}, the action's pre-condition is precisely {"o, so} and its
post-condition is {3p, so}; and vice versa.

When an action's pre-condition obtains, and if a goal to invert (at least) one of an action's
constituent sensors co-occurs herewith, we say that the action is relevant. The action will then
fire, ie. volunteer and broadcast goals to invert the actions's remaining constituent sensors, and
in so doing attempt to achieve said goal frorn the micro-perspective of that action.e

ETo adopt the third possibility, that of emergent phenomena in no way grounded in lower levels, is of course to
abandon any consistent notion of cause and effect and therefore rational thought in general. To those readen who
see red when the word 'emergent' is uttered, I note that the concept of emergent phenomena has a counterpart in
the global properties found in mathematics, eg. curvature.

eThat is, a given co-exclusion, say {so, 5o } +r {3o, s, }, reflects a particularized micro-view ofreality that says,
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Relevance can be similarly volunteered, on the reasoning "if sp can be changed to 5p then

an action 5os, can volunteer that s" -+ 3" is possible, and therefore is relevant as well. Thus

volunteering is a way to achieve the associative behavior characteristic of anticipatory systems.l0

Volunteered goals will in general cause other relevant actions to fire, until a goal referring

to an effector causes that effector to propagate the desired effect across the boundary to the

environment on the other side thereof. This will ultimately change some sensor(s), setting

off a wave of changes in the associated relevance relations, reflecting the new state of the

environment. This interplay between the state of the environment and Topsy's goals occurs

continually, with current goals changing dynamically in reaction to the environment's resPonse

to the effects of earlier goals.

Besides volunteering, one other implicit and dynamic mechanism is necessary, namely a means

for propagating relevance and goals from level to level. This is accomplished by reflecting

an action's relevance in an associated meta-sensor, whence the same thing will take place for

meta-meta-sensors, etc. We call this process the bubbling rp of sensory impressions.

Similarly, a goal to invert a meta-sensor will be reflecæd by the associated meta-effector's

issuing goals to the level below. Since a given meta-sensor represents in one bit the state of a

co-occurrenc e, ie. more than one sensor, a meta-effector fans goals out, level by level, on their

way down toward the primitive effectors at the environmental boundary. rWe call this process

the trickling down of goals.

The hierarchy-construction process leads to a number o{ features and properties deserving

mention:

o The meta-sensors and meta-effectors of a given level form the boundary between that

level and the level below. It follows that the boundary constituted by the primitive sensors

and primitive effectors is, conceptually, entirely arbitrary.

o Since the environment is formally unbounded in its complexity, it follows that the hier-

archy must be as well. And it is formally unbounded, in that if we abandon the pancake

restriction. the number ofentities that can be co-excluded increases hyper-exponentially:

2,7,I27,2t27 -1. Thisisaninstanceof thecombinatorialhierarchy (BastinandKilmis-

ter), (Parker-Rhodes), (Manthey, 1993).

o Co-exclusion over meta-sensors is inherently introspective and self-reflective, in that

meta-sensors themselves explicitly express internal, situated states. The capture of

an internal relationship by a co-exclusion elevates what was previously implicit and
'unconscious' to an explicit object.

o We have seen that sensory impressions S bubble up and goals G trickle down. A given

meta-leveln. * 1 is built over S, x S' and serves to further classifl sensory impressions.

When level n * 1 is based only on level n, we say the hierarchy is a fat ot pancake

hierarchy.

5o,thenthismeansthat5qmuJ'changetosq' ' 'andso.volunteer'
the goal gq -+ sq, which goal, like the fust, is visible to all other actions.

tdln 
" 

t 
"dition"l 

frame-based AI sysæms, this is called 'spreading activation', but it should be apparent that,

although the effect ofthe two processes is analogous, the mechanisms are quite diffelent.
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one can also consider hierarchies built by co-excluding over G x G and ,s x G, ie.'meta'-sensors sensing goal-co-occurences, and 'meta'-effectors and .meta'-actions ma-
nipulating goals for G x G; and analogously for S x G.

-  Fo rconc i seness ,wewr i t e (eg . )  GxG fo rG  x  G  x . . . xG .
- G x G, captures relationships betwe€n goals, and, via hierarchical expansion, can

express the structure of arbitrarily complex purposive acfivities. Since G x G actions
are grounded in goals, which themselves are primarily intemal, their hierarchy is
increasingly less grounded in environmental reality, wherefore I have dubbed such
actions icarian.

- ,9 x G, expresses the interplay between up-bubbling sensory impressions and down-
trickling intentions. since ^9 x G in a sense 'covers' both ,s x ^9 and G x G, r
consider 5 x G to be the most profound, and call such actions morphic. Note that
morphic actions provide a means for expressin g the self-generation of goals given
sensory situations (read self-choice), and in the other direction, the self-generation
of sensory situations given goals (read imagination).
Thus the basic phase web mechanisms of co-occurrence and co-exclusion. re-
applied, can create three distinct types ofhierarchy. In addition, entities belonging
to each of these can themselves be similarly combined ad infinitum. This should
provide sufficient expressive power for even the most demanding application.

o Bubbling up in an ,s x ^9 hierarchy corresponds roughly to integration (/), whereas
trickling down in the corresponding dual goal hierarchy corresponds to differentiation
(ô)' The R x G actions connecting them correspond then to the meeting of a goal and
a currently obtaining state, leading to 'action'. This is elaborated in the mathematical
section

r One can draw an analogy with Huygen's principle as recently elucidated by Jessel @ow-
den, in press), which says that any radiating primary source, can, when surrounded by
an arbitrary boundary, be simulated by a finite number of appropriately tuned secondary
radiators placed on that boundary. Thus hierarchical ascent can be compared to approach-
ing the original primary source. That the cycle hierarchy is at the same time formally
unbounded leads to a meta-physically satisfying outcome. below.

o I believe, though without being able to demonstrate it, that moving upward in the morphic
hierarchy corresponds to a shift to a more powerful system in the context of Gôdel's
incompleteness arguments.

Finally, the initial discriminatory basis for the hierarchy construction - the tensions between
excludes and co-occur and co-exclude in time - seems to blur in their interplay ttre traditional
distinction between epistemology and ontology. This obtains because, while co-occurences
and co-exclusion-based actions together constitute the universe of 'ontological objects', their
discovery (ie. epistomology) invokes the very same properties. Only after one has built up
considerable structure - corresponding to traditional space-time - would one seem to be able to
clearly separate the two.
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2 The Mathematical Model

This section presents, very informally, the most important mathematical aspects of the phase

web paradigm. In general, the vector orientation of the present approach is unique in computing,

which has traditionally been logic-oriented.

The point of departure is to view sensor states as vectors instead of scalars, as is conventionally

done.ll Figure 2a shows a single sensor's states so expressed, and Figure 2b the way two such

vectors can indicate a state, eg. ofan action.

sa+ sb

s#s
0

(a)

io
1 i

(b) v
sb

sa
1

{.
(1 , i )

Figure 2: Sensors as vectors.

The sensor state s : 1 indicates that sensor s is currently being stimulated, ie' a synchronization

stick for that state is present, whereas s = i indicates that s is currently notbeing stimulated,

and hence no stick for state s is present. Thus the two states of s are represented by the

respective semaphore values introduced in the definition of wait and signal in $ l.l.

That the sensors qua vectars.are orthogonal derives from the fact that, in principle, a given

sensor says nothing about the state of any other sensor. A state of a multi-process system such

as that depicted in Figure 2b is then naturally,expressed as the sum of the individual sensor

vectors. For example, the state (so,3o) : (1, i) is written as the vector sum sa * 34, which

also introduces the visual convention that a vector component written without a tilde is taken to

be bound to the value 1, and vice versa. Since such states represent co-occunences, it follows

that co-occurrences are vector sums. Note how the commutativity of '*' reflects the lack of

ordering of the components of a co-occulrence.

The next step is to find a way to represent actions mathematically. (Manthey,1994) presents

a detailed analysis of the group properties of both co-occurrences and actions, concluding

that the appropriate algebraic formalism is a (discrete) Clifford algebra, and that the state

transformation effected by an action is naturally expressed using this algebra's vector product.

Aprimecharacteristicoftir isproductisthatit isanti-commutative,thatis,for(sl)2 
- (t") ':1,

s1s2 : -szst.l2 The magnitude of any such product is the area of the parallelogram its two

avectorisamagnitudetogetherwithadirection(orientation).The

operations on vectois (+, ., ̂ ) ensure that one's intuitive expectations for how things combine are maintained.
- 

12The Clifford product ob can be defined as aô - a.b+ a nb,ie. the sum of the inner (') and outer (A) producB,

whe reaAb= -bÂo i s theo r i en teda reaspannedbya ,b .Thevec to r c rossp roduc toxÔ fam i l i a r t omany i sa
poor man,s version of o Â b inroduced by CifUr. fn" Uasis vectors sr of a Clifford algebra may have ("t)' = *1,

and while here we choose * 1 , reasons are appearing for choosing - 1 . As long as they all have the same squate,
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components span, and the orientation of the product is perpendicular to the plane of the
parallelogram and determined by the "right hand rule".

Applying the Clifford product to a state, one tnds - using the square-rule and the anti-
commutativity of the product given above - that

(s r  +  sz )s rsz  :31s182 *  s2s1s2 :  s2  *  315252: , i r  *  sz

that is, that the result is to rotate the original state by 90o, for which reason things like ,e1a2 âro
called spinors. Thus sfate change in the phase web is modelled by rotation (and reflection) of
the state space, and the effect of an 'entire' action can be expressed by the inner automorphism
s1s2(s1 * s2)s2s1: ,ir f 52, which corresponds to a rotation through 180o.13 It is interesting
to note that (s1s2)2 : -1, that is, the s1, s2-plane is the so+alled complex plane, and thus that
i : t/ - 1 is intimately involved.

One of the felicities of Clifford algebras is that one needn't designate one of the axes as
'imaginary' and the other as 'real'. Rather, the i-business is implicit and the algebra's anti-
commutative product neatly bookkeeps the desired orthogonality and inversion relationships.

The above spinors are just one example of the vector products available in a Clifford algebra
- any product ofthe basis vectors s1 is well-defined, andjust as s1s2 defines m ârêê, s1s2s3
defines a volume, etc. Not least because they are all by nature mutually perpendicular, the
terms of a Clifford algebra

. 9 ; * s ; s 3  * s ; s i s 7 r + . . .  +  s ; s i . . . s n  Q )

themselves also define a vector space, which is the space in which we will be working. [The
term (eg.) srsj above, for n :3, denotes s1s2 + s2sg * s1s3, that is, all possible non-redundant
combinations.l

At this point it is perhaps worth stressing that this vector space is the space of the distinctions
expressed by sensors, and as such has no direct relationship whatsoever with ordinary 3+l
dimensional space. The latter must - at least in principle - be built up from the primitive
distinctions afforded by the sensors at hand. This too is treated as a discrete space, ratherthan
the usual continuous ditto.

A Clifford product like s1s2 reflects both the emergent aspect of a phase web action (via its
perpendicularity to its components) and its ability to act as a meta-sensor (since its orientation
is  *1) .

One might therefore expect that the co-exclusion of two such meta-sensors, sa] s;si and soso,
would be modelled by simply multiplying them, to get the 4-action sisispso. This turns out
however to be inadequate, since although by the same logic the co-exclusion of (say) s; and s;s;
in Topsy expresses explicitly a useful relationship (eg. part-whole), the algebra's rules reduce
it from sisrsj to si, which is simply redundant.

Instead, we take as a clue the fact that goal-based change in Topsy occurs via trickling down
through the layers of hierarchy, and draw an analogy with differentiation. In the present
decidedly geometric and discrete context, differentiation corresponds to the bou.rdary operator
â. Informally, define ôs : 1 and let

ô(s1s2 .  .  .  s- )  :  szag .  .  .  sp -  s1,93 .  .  .  8-  *  ELs2s4.  .  .  sm - .  .  .  ( -1)-* t " rs2 .  .  .  sm-r

it doesn't matter for what is said here.
13Some readers might recognize this when written in the form os = s'a.

( l )
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that is, drop one component at a time, in order, and alternate the sign. Using the algebra's rules,

one can show that

ô ( s 1 s 2 . . . s - )  :  ( " t  +  t ,  +  " '  +  s ^ ) s 1 s 2  " ' s *

which is exactly the form of equation (1) for what an action does.

The boundary operator ô has a straightforward geometric interpretation. Consider an ordinary

triangle ABC spcifred in terms of its vertices A,B,C, whence its edges are AB,BC,CA.

Then
A ( A B C ) = B C - A C + A B

Since specifying the triangle's edges in terms of its vcrtices means that edge AC is oriented

oppositely to edge CA, we can rewrite the above as AB + BC + CA, which is indeed the

boundary of the triangle (versus its interior).

To find co-exclusion in this, we exploit the geometrical connection further. Take exppression
(2) expressing the vector space of distinctions, segregate terms with the same number of
product-components @rttù, and arange them as a decreasing series:

s; +L s;si f- ,rri"; é- ... +L tntT . . .sz-l é- ,nri . . . rn (3)

Here as before, sis; is to be understood as expressing all the possible 2-ary forms (etc.), and

hence the co-occurrence of pieces of similar structure. Each of the individuals is a simplicial

complex, and the whole mess is called a chain cornplex, expressing a sequence of structures of
graded geometrical complexity in which the transition from a higher to a lower grade is defined

by ô. Furthermore, the entities at adjacent levels are related via their group properties - their

hotnology, which I here assume is trivial.

Still on the scent of co-exclusion, it turns out that there is a second stru cture - a cohomology - that

is isomorphic to ("sameform as") the homology, but with the difference that arity (complexity)

increases viathe 6 (or co-boundar)) operator,r4 precisely opposite to â (cf. equation (3)):

s; -5 s;si -5 
"n"r'ro 

-5 .. . -5 
",t3 

. . .sz-1 -5 ,n"i . . . r' (4)

Building such increasing complexity is exactly what co-exclusion does. I note that a Clifford

algebra satisfies the formal requirements for the existence of the associated homology and

cohomology.l

Figure 3, due to @owden,l982), illustrates these relationships (eqns. 3,4). I call this a ladder

diagrarn.

The left side of the ladder is the homology sequence generated by â over the representation of

actions as Clifford products. The downward flow of decomposition of the structure into simpler

pieces (ie. the crossing of successive boundaries) corresponds to the trickling down of goals

described eadier.

The right side of the ladder is similarly the cohomology sequence generated by ô from sensory

impressions. The upward flow of composition of structure to form more complex structure

conesponds to the effect of co-exclusion, up through which increasingly complex structure

sensory impressions bubble.

laMore precisely, (oo,6tP-r) - (ooô,û-r), where oo is a simplicial complex with arity p, and Ê the

corresponding co-complex.

319





The circles represent all the entities (Clifford algebra terms) at the particular level of complexity.

The larger of the two circle-halves holds those entities which will map to zero with the next

hierarchical transition (ô or ô) - called the kemel of the group - as indicated by the pointed
'beak'.

The rungs of the ladder, besides denoting the location and content of cycle hierarchy levels,

also express the fact that there exist isomorphisms (p, p-11 between the structures at either end

of a given rung.l5 The shaded portion, which can be seen to repeat in both directions, expresses

the so-called commutation relationships that obtain. That is, if one chooses a particular group

element and follows the transforming arrows around the interior box, one not only arrives back

where one began, but also back at the exact same element one began with! One says that

the isomorphisms commute, and one may also take longer paths, though always obeying the

box-arrows (otherwise the commutation relation generally won't hold).

The shaded shape points out a unique property of the homology-cohomology ladder, one that

even most topologists seem unawtue of, namely that the isomorphisms F, F-r arc t\isted,that

is, the kemei of the group at one end of a rung is mapped by p (respectively, p-1) into the

non-kernel elements of the group at the other end. This property was discovered by (Roth)

in his proof of the correctness of Gabriel Kron's (then controversial) methods for analyzing

electrical circuits (Bowden), and turns out to have profound implications. For example, the

entirety of Maxwell's equations and their interrelationships can be expressed by a ladder with

two rungs plus four terminating end-nodes (Bowden), and (Tonti) has - independently - shown

similar ielationships for electromagnetism and relativistic gravitational theory. Ro*r's twisted

isomorphism (his term) thus reveals the deep structure of the concept of boundary, and shows

that the complete story requires both homology and cohomology'

I interpret the twisted isomorphism to be expressing a deep complementarity between the

con""ftr of action and state, between exclusion and co-occurrence. In the running Topsy

program, p,, 1t-r connect goals' trickling down to sensory states' bubbling up. Think now about

ttrit, tuppor" you follow only the goal/homology side down. As boundary after boundary is

crossed, all that happens is that a larger goal is split into successively nzurower subsidiary goals.

Imagine that you arè following a ladder structure that describes the entire Universe. When and

where does the actual change occur?!

The answer is that it never does, as long as you stick to the homology side of the ladder.

Similarly, if you stick to the cohomology side, states never turn into goals: there is eternal

stasis. it is the mappin Es F, p-r that allow dynamic and change, converting something that

doesn't exist, even conceptually, on the one side to something that constitutes the conceptual

universe of the other. Bui this is what morphic actions do explicitly, so P, 11-t correspond to

actions over S x G.r6

Summarizing, we have seen how morphic actions conespond to lt, lt 
', and it should be clear

that the conversion ofmeta-sensors to meta-actionslT via co-exclusion (S" x S") corresponds to

ô; similarly, icarian actions (Gn x G,) correspond to d; non-pancake hierarchies are, of course,

d bY level' P^ l t"','] '
loGiven that I associate wave properties with the concept ofco-occurrenceand particle properties with exclusion

and action, this means that p, p:l eipress wave-particle duality, but in a hierarchical structure that itself expresses

no difference between the microscopic and the macroscopic'
l?Linguistic and conceptual puriiy would demand, since we're on the d/state side of the laddec that I write

.metâ-object' or .meta-stâte' initeai of 'meta-action', but this distinction is blurred outside of a mathematical

context, so I don't.
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more complex mathematically. Figure 4 illustrates two possibilities, both non-pancake.

(.) l,lo.phic e.liof,! .,ld bouridrty

-\--.--)---1 
-)-f

(b) l6dù actbæ .,td bo@dÙy

Figure 4: Morphic vs. icarian hierarchies.

In conclusion, the attempt to put the phase web and Topsy on a firmer mathematical footing
tums out to lead to the same mathematical structures as underpin both contemporary physical
and (I understand) bio-physical theory. Things could hardly have turned out better for a novel
computational approach to expressing information, learning, behavior, and in general, the
structures and mechanisms pertinent to anticipatory systems.

3 ModellingAuto-Poiesis

Our goal now is to describe auto-poiesis (Maturana and Varela, 198?) using the apparatus of
the phase web. We have two ways to express the latter at hand, a computational way and
mathematical way. The former provides many important details that the latter lacks, but since
this lack is an advantage in the present context, we will couch the description with reference to
the mathematical version.

Auto-poesis invokes three interdependent activities: (l) sensing the environment and catego-
rizing the information so gained; (2) acting on this information in a manner consistent with the
structure of said environment; and finally, (3) acting in such a way as to be able to maintain,
and even improve, the ability to carry out these three activities.

It should be stressed that the unpredictability of the environment effectively precludes a com-
pletely pre-programmed solution, if for no other reason than that the combinatorial complexity
of the impulses coming from the environment together with the desired response, if explicitly
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listed, would simply take up too much 'room'; that is, such a solution is, from a bio-engineering

point of view, implausible. This conclusion obtains even when, as is the case with (say) in-

sects, the topJevel behavior is apparently very rigid, since even walking about or flying cannot

be similarly rigid. Accordingly, we assume that the solution must be non-deterministic and

adaptive in character.

We now take up each of the above three activities.

3.1 Sensing and Categorizing

The key problem here is the sheer combinatorics of the sensory input: n sensors taken

I,2,3 .. . n at a time yields 2" possible combinations. Since even a simple cell can be construed

to interact with its environment over most of its surface, clearly n is very large. Moreover, this

analysis does not consider that it is not leastthe order ir.which the various sensory combinations

occur that is important, in which case things grow factorially.

The concept of hierarchy is therefore a critical bio-engineering tool. This is so because, as

already noted by (Simon, 1967), a hierarchical organization reduces complexity logarithmically.

However, even Simon's analysis implicitly invokes a subroutine-calVfunctional hierarchy, and

overlooks the fact that the multiplicity of simultaneous impulses from the environment requires

multiple, likely overlapping, hierarchies, one for each context so invoked.

This is where the bubbling-up of sensory impressions characteristic of the cycle hierarchy (ie.

the ô-side of the ladder) comes to the rescue: the ô structure contains implicitly all possible

hierarchiesls, and the bubbling-up process orients the structure to rtlrich hierarchies are relevant

in the given context. The particular orientation thus achieved is at the same time ipso lacto a

categorization of the the sensory stimuli in that context.

Therefore, we model the categorization of an organism's sensings as a simple meta-hierarchy,

where each level builds essentially directly on the level below. How many such levels there

might be for this is presumably dependent on the organism's complexity. The top level of such

a hierarchy will contain the highest-level categorizations, and presumably most contexts will

"light up" several, though distinct, top-level category nodes.

3.2 Environmentally Appropriate Behavior

Once these categonzations of the environment arc available. lrye can address the issue of
choosing an appropriate response. A given response can in general be expected to span several
modalities (ie. distinct "effectors").

Even though the response is not required to be especially prescient (this is the responsibility of
(3) above), it is nevertheless a fact that even the most trivial 'intelligent action' requires a fair

amount of organization and coordination to achieve. For example, bio-engineering economy
requires that the same components be used to respond to similar situafions, and ensuring that this

functional overlap does not get in the way of the correct response in the p srticular situation leads

to the need for the aforementioned coordination. The example in (Manthey,l996) illustrates
this clearly.

18Modulo, of course, the distinctions the organism is in fact capable of.
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Another way to put this is that, given that the categorization process selccts one or several
categories out of many, the generation of appropriate behavior can be characterized as the
ability to control the transition from the current category-set to an intended new ditto. This in
furn requires a structure that spans over the existing categoization strucfure. We write 'span

over' (when 'span' alone would have been sufficient) to emphasizn, that we are not speaking
here of simply adding levels on top of the categorization meta- hierarchy, but rather a morphic
hierarchy (cf. eg. Figure 4a) that literally spans over the entire categorization structure, more
or less from top to bottom.

This superstructure, besides exhibiting clearly the greater flexibility and generality of the ladder
hierarchy compared to functional ditto, is genuinely self-reflective. This obtains, as should be
clear from the figure, because it is the mechanism and dynamics of the categorization process
itselfthat are being abstracted over.

We choose a morphic hierarchy primarily because a meta-hierarchy (which might otherwise
be considered as a candidate here) cannot itself generate its own goals (being constructed
over ,9 x 5), whereas this is a principle characteristic of a morphic hierararchy (which is
constructed over 5 x G). The morphic superstructure, consisting (say) of two-four levels,
has the responsibility for issuing goals to the underlying meta-hierarchy. It is these goals that
control the transition from the current situation to a desired new one. [In this conneetion, it is
perhaps appropriate to emphasize that the structures we are describing are entirely comfortable
with unexpected reactions to their effector-bom manipulations from the environment: the goal-
driven regime ensures that the organism will adaptively pursue the achievement of its intents in
the face of non-deterministic outcomes.l

3.3 Auto-PoieticBehavior

The goal of auto-poietic behavior is to ensure the continued existence of the organism. To
this end, it seems obvious to simply iterate the logic of the preceding construction. That is,
just as we above used a spanning hierarchy to self-reflect the categorization process in order to
control the transitions between categorizations, we now introduce a second spanning hierarchy
to self-reflect over the transition-control process.

This second spanning hierarchy must, like the preceding, be able to generate goals, although
in this case the goals are meant to control the long-term behavior of the organism. That is,
it is entirely conceivable that in all but the most primitive organisms, there are a number of
more or less mutually exclusive reactions that could be generated in a given situation. The
preceding morphic hierarchy cannot 'intelligently' choose among these possibilities because
their mutually exclusive properties are not explicitly visible to it(self). Thus, another way to
describe the utility of the superstructures we are building here is that they make explicit various
relationships that are entirely implicit in the structure over which they brood.

Whether this second self-reflective level should be morphic or icarian is at this point a matter
of speculation. Icarian structures, because they are built solely over G x G, that is the co-
occurrence or mutual exclusion of goals themselves, are nafurally suited to controlling longer
sequences of actions, ie. actions that must be carried out in a particular order in order for
the whole sequence to be successful. To accomplish this, icarian actions interact with their
root boundary by retracting and (perhaps later, re-)issuing goals 'belonging' to the underlying
hierarchy, here the morphic one just described. In that goals are purely intemal to the organism,
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the danger exists that a deep icarian hierarchy can become so involved in pursuing its own goals

that it loses sight of the actual environmental situation and feedback. In contrast, a morphic

hierarchy avoids this - it's by definition (more) directly connected to the environment via its

S-component - at the expense of tending toward hard-wired reaction and a weaker ability to

manage the interplay between goals.

In either case, one can argue that this auto-poietic superstructure should be rooted not only

in the underlying morphic hierarchy but also in the original 'primitive' level. This will help

the overall structure to maintain a closer connection to environmental reality. One can also

consider literally feeding-back the results of this stage into the lower level(s), again in the errand

of greater cohesion of the whole.

Of course, there is still no guarantee that this second self-reflective level will succeed in the

long term, and the same applies no matter how many such levels exist, so at some point, one

must appeal to natural selection and its accompanying phenomena for the final auto-poietic
judgement.

Howsoever, we claim that for an organism to display auto-poietic behavior, it must possess,

as a minimum, the above-described three level-structures - one to categorize the current state

of the environment vis a vis the organism, one to connect these categorizations to immediate

reactions, "tactics", and one to oversee its long-term behavior, "strategy".

4 Summary and Conclusion

We have presented a situated computational model - the phase web - that we believe capable

of describing the true structure and behavior of anticipatory systems. It is a pure process

model whose fundamental departure from traditional algorithmic thinking allows it to meet

Rosen's (1991) criticism of the latter, and which can express emergent phenomena. Being a

computational model, it is able to propose explicit mechanisms and processes for acquiring

and using, adaptively, information from its environment. The key insight is to express the

desired activities in terms of pattems of synchronization among the events constituting an

organism. These patterns fall into two distinct categories - co-occurrence and mutual-exclusion
- that together are capable ofexpressing the concepts ofevent (synchronization itselfl, process

(via exclusion), information (cf. the coin demonstration), space (via co-occurrence), time
(via exclusion), action (via co-exclusion), structure (via hierarchy), self-reflection (via co-

occurrence and exclusion over internal events), intent (via goals), etc. As a result, the model

need not appeal to mechanisms outside of itself, that is, the modelling tools themselves exhibit

logical closure, and are, apparently, complete.

After a brief description of how a program embodying these concepts (ie. Topsy) actually works,

we showed how this same model can also be described in terms of algebraic topology. The key

identifications making this possible are: (1) a binary sensor can be viewed as a vector, and the

set of sensors connecting an system to its environment as an orthonormal basis; (2) the sum of

sensor vectors captures the concept of co-occurrence and their (Clifford) product the concepts

of exclusion and action; (3) the co-exclusionary property of complementary co-occurences

allows the composition of sensory-object abstractions from environmental stimulation and

corresponds to the co-boundary operator ô; (4) this induces a hierarchy of co-boundaries and

co-chain complexes, which in turn, via Roth's twisted isomorphism, (5) induces a corresponding
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and isomorphic homology - ie. a hierarchy ofboundaries and chain complexes - that expresses
the decomposition (via the boundary operator â) of goals on meta-sensors into sub-goalVsub-
actions, leading ultimately to extemally-directed effects on the environment; and finally, (6)
th\s ladder hierarchy yields three distinct types - meta, morphic, and icarian - corrresponding
(very roughly) to classification, situated reaction, and goal-interaction.

Finally, the preceding section showed how to apply this model to the description of auto-poietic
behavior. We concluded that an auto-poietic system must as a minimum contain three distinct
hierarchies, one to classify sensory input in a (presumed) non-deterministic regime; one to
self-reflectively react to the current, now classified, situation in an appropriate and controlled
manner; and one to self-reflectively choose among the possible, now identified, reactions, and
in so doing pursue the overall goal of achieving and maintaining auto-poiesis.

V/e claim as well that this cannot be achieved within reasonable bio-engineering constraints
without invoking the ladder-hierarchical structures we have described. We claim further that
these hierarchical structures must be interconnected essentially as described in order to obtain
the self-reflectivity without which very little of this behavior can be achieved.

Finally, we claim that these are not burdensome constraints at all, but ratherjust those that are
needed, both in terms of modelling apparatus and technique, to describe that which is so very,
very special about anticipatory systems.
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