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Abstract: Any singularity free vector field X defined on an open set in a three-dimensional
Euclidean space with curl X = 0 admits a complex line bundle F* with a fibre-wise defined
symplectic structure, a principal bundle P* and a Heisenberg group bundle. For X = const. the
geometry of P* defines the Schrodinger representation of any fibre of the Heisenberg group bundie
and a quantization procedure for homogeneous quadratic polynomials on the real line visualised
as a transport along field lines of internal degrees of freedom in F®. This is related to signal
transmission.
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Wenn man das leisten konnte, was man meines Erachtens wird leisten konnen, auch
den Begriff des dreidimensionalen Raums aus der abstrakten Quantentheorie herzuleiten
- und damit auch die Begriffe von Feld und Teilchen aus der abstrakten Quantenthe-
orie - dann ist Quantentheorie primar nicht eine Theorie iiber Materie, sondern dber
Information, genauer “uber Bits in der Zeit”.

- C. F. v. Weizsicker, Heisenberg als Physiker und Philosoph. Rede zum Tod von
Werner Heisenberg anlisslich der Gedenkfeier des Max-Planck-Instituts am 12.
Mai 1976 in Miinchen.

1 Introduction

It is well-known that the quadratic approximation in optics yields in a natural way a quanti-
zation procedure of quadratic homogeneous polynomials on the real line (Guillemin, Stern-
berg, 1991). A basic ingredient on which this quantization relies is the three-dimensional
Heisenberg group. Moreover, in the treatment of radar signals as done in (Schempp, 1986)
and in the mathematical description of MRI as presented in (Schempp, 1998), the same sort
of quantization procedure appears. The fundamental ingredient in both of these procedures
is again the three-dimensional Heisenberg group with its harmonic analysis (Schempp, 1986),
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(Folland, 1989). The metaplectic group | Jmolved in the quantization is the symmetry group
of the coadjoint orbits of the Helsenbe ;g group mentioned above.
a natural relation between the transmission of a
“the quantization procedure of homogeneous quadratic
e key ingredient in the construction of this quantization is
)erg group again.

The relatlon mentioned above is based on a natural type of internal degrees of freedom
associated with a singularity free vector field X defined on an open part O of a three-
dimensional Euclidean space E. This kind of internal degrees of freedom is directly related
to the points of (non-trivial) coadjoint orbits of Heisenberg groups, constructed from the
vector field X, as we will see.

If the vector field .Y is a gradient field with principal part a, say, then there are natural
bundles over O such as a complex line bundle F* (of integral Chern class) with a fibre-wise
defined symplectic form «°. a Heisenberg group bundle G* and a four-dimensional principal
bundle P* with the structure group U(1). (Fibres over O are indicated by a lower index z.)
For any x € O the fibre F is the orthogonal complement of a(z) formed in E and encodes
internal degrees of freedom at r. The elements of F? are called the internal variables. The
fibre of . is. moreover. identified as a coadjoint orbit of G%. The principal bundle P?, a
subbundle of the fibre bundle F* (associated to P?), is equipped with a natural connection
form a“. encoding the vector field in terms of the geometry of the local level surfaces: The
field X can be reconstructed from a®. The collection of all internal variables in F** provides
all tangent vectors to all locally given level surfaces. The curvature Q® of a® describes the
geometry of the level surfaces of the gradient field in terms of w* and the Gaussian curvature.
For central symmetric vector fields ’P"[ 2 is diffeomorphic to the orthogonal frame bundle of
S-

To demonstrate the mechanism we have in mind, the principal part a of the vector
field X is assumed to be constant (for simplicity only). Thus the solution curves, i.e. the
field lines, are straight lines. Fixing some x € O and a solution curve 3 passing through
r € O, we consider the collection of all geodesics on the restriction of the principal bundle
P to 3. This restriction is a cylinder. Each of these geodesics, called a periodic lift of 3,
has the same speed as 3 and passes through a common initial point v, € P2, say. This
collection of periodic lifts of .3 defines a unitary representation of the Heisenberg group G2,
the Schrodinger representation (Guillemin, Sternberg, 1991).

The automorphism group of G¢ is the symplectic group Sp(Fy?) of the symplectic com-
plex line F. Therefore. representations of G yield projective representations of Sp(F?),
due to the theorem of Stone-von Neumann. This projective representation is resolved to a
unitary representation of the metaplectic group Mp(F¢) in the usual way. Associated with
this kind of representation is a geometric construction of a transport of all internal degrees of
freedom in F?. This transport visualises the metaplectic representations in geometric terms.
Its infinitesimal representation of the Lie algebra mp(F?) of Mp(F?) yields the quantiza-
tion procedure on all homogeneous polynomials defined on the real line. Of course, this is
in analogy to the quantization procedure mentioned above emanating from the quadratic
approximation in optics.

The link to the transmission of signals is made as follows: The choice of v, € P¢ turns
F? into a field of complex numbers. The real axis corresponds to the g-axis on which the
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complex-valued signals are defined. A geodesic 4 given on P?|; transmits this signal ¢ to
some Fi' with y on the curve J. The values of the signal ¢ are in F} which is also turned into
a field isomorphic to the complex numbers via the horizontal lift of 3 passing through v,.
Detecting this signal means to bring the transmitted signal into resonance with the reference
signal being the transmission of ¢* along a horizontal lift of 3. This reference signal has
the same spatial initial condition v, on Py as . The channel of information transmission
iz the field line 7. This kind of transmission yvields a Schrédinger type of equation for
a linear subspace of signals made time dependent via the Schrodinger representation. This
procedure is then extended to data on all of F again reflecting and visualising geometrically
the metaplectic representation mentioned above.

We point out here that the complex numbpr i appearing in the formalism of quantum
mechanics corresponds to the unit vector %+ of the channel of information. This unit vector
oy 15 the imaginary unit in a (ommut(mw subfield of the skew field of quaternions. This

subfield is isomorphic to €. Hence '% realizes (.

2 The Complex Line Bundle Associated with a Singularity Free
Gradient Field in Euclidean Space

Let O be an open subset not containing the zero vector 0 in a three-dimensional oriented
IR-vector space E with scalar product < . >. The orientation on the Euclidean space E
shall be represented by the Euclidean volumme form pg.

Our setting relies on a smooth. singularity free vector field X' : O — O x E with
principal part « : O — E. say.

NMoreover. let H := IR -¢ = E be the skew field of quaternions where € is the multiplica-
tive unit element. The scalar product <. > on E extends to all of JH such that e € IH is a
unit vector and the above splitting of JH is orthogonal. The unit sphere S3. i.e. Spin(E), is
naturally isomorphic to SU(2) and covers SO(E) twice (Greub, 1973, 1978).

Given any « € O. the orthogonal complement F¢ of u(x) € E is a complex line as can
be seen as follows: Let €' C IH be the orthogonal complement of F7. Hence the field of
quaternions IH splits orthogonally into

H=¢" - F. (1)

As it is easily observed.

a(x)
la(r)]

C:=R-e= R

is a commutative subfield of H naturally isomorphic to € due to

e . vreo.
|a(z)]
where | - | denotes the norm defined by < . >. Obviously Iu(i)l realizes 1 € €. This
isomorphism shall be called i : € — €'3; it maps 1 to e and i to A5 The multiplicative

la(z)]"
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group on the unit circle of €5 is denoted by U2(1). It is a subgroup of SU(2) C HH and
hence a group of sp:ms. Obviously ;%)L‘ generates the Lie algebra of Ug(1).

F?¢ is a @¢-linear space under the (right) multiplication of /H and hence is a €-linear
space, a complex line. Moreover, JH is the Clifford algebra of Fy equipped with — <, >
(Greub, 1978). The topological subspace F* := |J,co{z} X F2 of O x E is a @'-vector
subbundle of O x E, if curl X = 0. as it is easilv seen. In this case F* is a complex line
bundle (Sniatycki, 1980), the complex line bundle associated with X. Let pr® : F* — O
be its projection. Accordingly there is a bundle of fields '* — O with fibre €'} at each
r € O. Clearly,

OxH=0*x F*",

as vector bundles over O.

We therefore assume that curl X' = 0 from now on.

Due to this assumption there is a locally given real-valued function 1. a potential
of a, such that @ = grad V". Each (locally given) level surface S of 1" obviously satisfies
TS = F*|s. Here F®|s = Ues{x} x F2. Each fibre F? of F? is oriented by its Euclidean
volume form pg( % ........ ). For any level surface the scalar product vields a Riemannian
metric gs on S given by

gelas g, ) 1= < . ly > VereOandVe,,uw, €T,S.

For any vector field Y on S. any .« € O and any ¢, € T.S, the covariant derivative V' of
Levi-Civita determined by gy satisfies

VoY(i) = dY(mu)+ < Y(x), Wa(v.) > .

Here W72 :T,S — T,S is the Weingarten map of S assigning to each w, € TS the vector
(Ij:-’l-|(1': w,), the differential of —;‘— at @ evaluated at w,.

A simple. but fundamental observation in our setting is that each fibre F* C F” carries
a natural symplectic structure »* defined by

Hrih k) =< hxalx)k>=<h-alr).k > Yh.k = F'.

where x is the cross product in E. being here identical with the product in H.
Let n(z) := det W7 for all x € S. the Gaussian curvature of S. The relation between
the Riemannian curvature R and w is given by

K(x)
la(x)]

provided v,, w, is an orthonormal basis of T,S.

R(x:v,.wy : up. Yr) = Wi riu,.yy) VreS and Vu,.y.€T,S. (2)
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3 The Natural Principal Bundle P* Associated with X

We recall that the vector field X on O has the form X = (id.a). Let A2 C F? be the circle
centred at zero with radius |a,(£)|‘% for any x € O. Then

Pri= | J{z} x K2
z€0
equipped with the topology induced by F° is a four-dimensional submanifold of F*. It
inherits its smooth fibre-wise orientation from F®. Moreover, P* is a U'(1)-principal bundle.
U(1) acts from the right on the fibre P2 of P? via i : U(1) — U2(1) for any = € O. The
reason for choosing the radius of K2 to be |a(x) =3 will be made apparent below.

Both F* and P° consist of internal variables and both are constructed from X, of
course. Clearly, the vector bundle F* is associated with P¢. Apparently the vector field
X can be reconstructed from the smooth fibre-wise oriented principal bundle P as follows:
The vector field X admits a characteristic geometric object. namely the smoothly fibre-wise
oriented principal bundle P* on which all properties of X can be reformulated in geometric
terms. Vice versa, all geometric properties of P? reflect characteristics of X in particular of
a.

The fibre-wise orientation can be implemented in a more elegant way by introducing a
connection form, o, say, which is in fact much more powerful. This will be our next task.
Since P* C O x E, any tangent vector £ € T,,P* cau be represented as a quadruple

E=(zsve: D6 JEOXREX EXE

with z € O, v, € P2 and h,(,, € E C IH with the following restrictions. expressing the fact
that £ is tangent to P°:

Given a curve o = (01, 02) on P® with 0,(s) € O and oy(s) € P2, ,, for all s. then

o1(s)
< 03(s),a(01(s)) >= 0 and loa(s))? = I—I—T Vs.
ja(o1(s))]
Each ¢ € T, P° given by ¢ = 0, (0) is expressed as
alx Uy vy X afx

= T T e e .

with
r=—-<Wluw)h> . rn= -Il—;—l -dln |a|(z: h)

and a free parameter 1 € IR. The Weingarten map W7 is directly determined by the
differential da of a which is of the form

da(z; k) = |a(z)| - W2(k) + a(z) - d1In|a|(z; k) VreO,Vk€eE, (4)

where we set W2(a(z)) = 0 for all z € O. With these preparations we define the one-form
a®: TP* — IR for each £ € TP® with § = (z, v;, 1, ) to be
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o*(:,8) i=< U X al2), (>
One easily shows that a® is a connection form (cf. (Greub et al., 1973) and for the field
theoretic aspect (Binz et al., 1988)). To match the requirement of a connection form, the
size of the radius of P2 for any = € O is crucial. The connection form provides P* with a
smooth fibre-wise orientation among other qualities, of course.

Thus the principal bundle P* together with the connection form a* characterises the
vector field X, and vice versa. In other words the geometry of the collection of all internal
variables in P* characterizes .Y uniquely.

Next we will determine the curvature Q% of a®. It is defined to be the exterior covariant
derivative of a®. To this end the horizontal bundles in TP® will be characterised. Given
v, € P? the horizontal subspace Hor,, C TP* is defined by

Hor,, = ker a"(vg; ..)-
A vector &,, € Hor,,. being orthogonal to v, x a(z), has the form (x, v, h, (") € O x E x
E x E where h varies in O and (" satisfies

gl Fay
chor = — < W2 1*1).h>-,u—(l—)—,—M~dlna x:hy- :
° . a2l ]

The exterior covariant derivative d""a® is defined by

Uy
V.

d" 0% (vy, &0, &) o= da(vz: €07, E0) Y &o,& €T, P*, Vv, €Plandz €O

(Binz et al., 1988). (Sniatycki. 1980). The curvature Q° := d"°"a® is sensitive in particular
to the geometry of the (locally given) level surfaces. The following is easily proved:

Proposition 1 Let X be a smooth singularity free vector field on O with principal part a.
The curvature Q° of the connection form a® is

|a]
where v : O — IR is the leaf-wise defined Gaussian curvature on the foliation of O given
by the collection of all level surfaces of the locally determined potential V. The curvature Q°
vanishes if one argument at any x is a multiple of a(x); in particular it vanishes along field
lines of X.

The curvature Q* is integral since 7‘;' - w
theorem of Gauss-Bounet
= Lor=xs)
4m Js

where \(S) denotes the Euler characteristic of S. which is an integer.

The fact that the curvature Q° vanishes along field lines plays a crucial role in our
set-up. From section five on we will assume a = const. in order to demonstrate on a simple
model the relation between the transmission of internal variables along field lines of X and
the quantization of homogeneous quadratic polynomials on the real line. Clearly, the field
lines of X are straight lines in this special case.

a a

? is the Riemannian curvature and hence by the
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4 An Example

As an example of a principal bundle P® associated with a singularity free vector field let
us consider a central symmetric field X = grad V" on E with the only singularity at the
origin. In particular. this is to say that the principal part « is invariant under SO(E). The
field lines of X are thus straight lines emerging from 0 € E. Restricting X to O := E\{0}
vields a singularity free vector field with level surfaces S, i.e. spheres of radius r centered
at O C E. Obviously «(r) = |a(2)] - i for all » € O. The Gaussian curvature rsz(x) of
S} satisfies kg2(x) = =5 at any 2 € S? and for all r > 0. In fact the following holds true:

The well-known Hopf projection pry of S3 to S? extends to all of H by setting

pry(r-u)=r-n(ry) VreR andVue SU(2)

where 7, is the inner antomorphism of HH given by v € SU(2). Hence Hisa U(1)—principal
bundle with pr,, . H — O as its projection, here called the extended Hopf fibration.
Thereforc. we state:

Proposition 2 The ectended Hopf fibration of IH over O := E\{0} defined by the projection
pry is the two-fold covering of the principal bundle P* of any central syminetric gradient
field in E with the only singularity at the origin.

The above proposition visualises the geometry of the level surfaces and the field lines
in terms of the principal bundle P*. The field strength of the vector field is encoded in the
connection form a“. of course. The Hopf fibration plays an important role in teleportation,
planetary motion and the treatment of the magnetic monopole (Binz. Schempp, 1999. 2000a).
(Greub. Petry. 1975).

5 Horizontal Lifts and Periodic Lifts of 3

Let « = const. from now on. Since Q7 # 0. in general, the horizontal distribution is not
integrable along level surfaces. However. Q% vanishes along field lines of X. Let us look at
Pe|; where 3 is a field line of Y. Due to @ = const.. J is a straight line and hence P?|; is
diffeomorphic to a cylinder.

A horizontal lift of 3 is a curve 3" in Hor = ker a“ which satisfies Tprgh = 3 =a
and obeys an initial condition in 7P?|3. Hence there is a unique curve J,’};"’m passing through
v3(0) € P5(g- sav. called horizontal lift of 3. This is nothing else but a meridian of the cylinder
P¢|s containing . Let 3(0) = x.

Obviously. a horizontal lift is a geodesic on P¢|; equipped with the metric ggor,, 5ay.
induced by the scalar product <, > on E.

Here a curve 5 on P?|; is called a periodic lift of J through v, iff it is of the form

1(s) = 3h(s) - €% € Py, Vs, (5)

where p is a fixed real.
Clearly, 7 is a horizontal lift through v, iff 7 = 32", i.e. iff p = 0. In fact any periodic
lift 5 of 3 is a geodesic on P?|;.
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Due to the U(1)—symmetry of P?|;, a geodesic o on P*|; is of the form

a(s) = 3(@-5)- " Vs
as it is easily verified. Here p and @ denote reals. € determines the speed of the geodesic.
Thus ¢ and 3 have accordant speeds if # = 1. as is easily seen from

7(5) =p- d:r:n(s) o —(7_ . e}"(""Z‘I + dli::)r(s) € E VS

]
and in particular from

a

$0) = p- vy - =+ F(0).

|
The real number p determines the frequency of the periodic lift § due to Z—TI = ];f The
frequency of v counts the number of revolutions around P*|; per unit time and is determined
by the F2-component of the initial velocity. On the other hand p is the F2—component of
the momentum of the motion ~. due to the U'(1)—symmetry of the cylinder P*|;.

Any periodic lift 7 of 4 through v, is uniquely determined by the U"%(1)-valued map

pos
S € le

here called an elementary periodic function. Therefore. we can state:

Proposition 3 Let r = 3(0). Under the hypothesis a = const. made above there is a one-to-
one correspondence between all elementary periodic U®(1)-valued functions and all periodic
lifts of 3 pussing through a given v, € PS.

U%(1) C SU(2) = Spin(E) (Greub, 1978) is a one-parameter group of spins generated
by the unit vector -: it acts on F3. Thus a periodic lift on P!, can be interpreted as the
evolution of an initial spin v, in Fy along a geodesic on P?|;. In this context the line IR - ]
is the channel of information transmission.

On the other hand an internal variable of X can be interpreted as a piece of information.
Thus the fibres F? and P can be regarded as a collection of pieces of information at & and
the periodic lifts of 3 on P ; describe the evolution of pieces of information of P, along
3. We shall show later how the information in F? evolves along J. This evalution will be
linked to the quantization procedure of homogeneous quadratic polynomials on the real line.

6 The Heisenberg Group Bundle Associated with the Singularity
Free Vector Field

Associated with the (2 + 1)—splitting of the Euclidean space E caused by the vector field
X there is a natural Heisenberg group bundle G* with . as symplectic form. The bundle
G* allows to reconstruct X as well. Heisenberg groups play a central role in signal theory
(Schempp, 1986, 1998).

Given x € O the vector a(x) determines F and @' which decompose IH according to

(1).
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The submanifold G¢ := UZ2(1) © F¢ of IH carries a Heisenberg group structure the
multiplication of which is defined by

1 8 (r:hyha) 2
(214 h) - (22 + ho) i= 21+ 29 - e FURITT Ly oy

for any two z1, 2o € U2(1) and any pair hy, hy € F2. The collection

G* = | | {=) % G2
z€0
can be made into a group bundle associated with the principal bundle P®. Clearly F* C G*
as fibre bundles. Due to the assumption a = const. on O, all the bundles, the complex line
bundle £, the principal bundle P* and G* are trivial. This means that the field X can be
described in only one Heisenberg group. This is the standpoint adopted in (Schempp, 1998).
The Lie algebra G¢ of G2 is

gi:=R-—&F;

together with the operation

a a
lal faf
for any 9;,Y, € IR and any h;,h, € F?. The exponential map eXpgs : G — G is
surjective. In the case under consideration, the Lie algebra bundle G?, frequently called the
adjoint bundle of G°, is trivial as well. Obviously, X' can be reconstructed from both G”
and G°. The algebras G5, and Gj,, are naturally isomorphic. as is easily seen.

Given z € O the adjoint operation Ad® : G2 x G2 — G? acts by

+ hi. 0 - = + hoj == w(&ihy. hy) -

= ]

a

la]
forany z+h € G; and any 9 - 4 + by € G;. The coadjoint action Ad” : G§ x G —GT
sends each < ¥ & +hy,.. > € Gs applied to (¥ - & + k) € G into

Ad (0 - ot +hy) = (V4 w(x:h. hy))

= hl
|a]

L3
la|
= 9 (0 — (1 h k) + < husk > .

Fhi (V — (@ h k) -+ k>

Fhy, . )W
|af

a* a
Ad(l+h)—1(< P Ial

la|

+k) = <v-

Therefore, the coadjoint orbit of Ad®" passing through < v - %l + hy... > with ¥ #0 is

9. — @ F2. (6)

This orbit is a real affine space the underlying vector space of which is a complex
line and a symplectic manifold, of course. The symplectic structure is w®(x;...,...). This
establishes the relation between our geometric setting and the use of coadjoint orbits of the
Heisenberg group in (Schempp, 1986, 1998). In our setting these coadjoint orbits serve as
screens.
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7 Representation of the Heisenberg Group Associated with Pe-
riodic Lifts of 3 on P?|;3

Throughout this section 7 denotes a field line of X, a straight line, with initial condition
3(0) = r. Again 3" is the horizontal lift of 3 through v, € P2. There is a unique periodic
lift 4 of 7 passing through v, = 7(0) with prescribed velocity 4(0). At first we will associate
with 5(0) a well-defined unitary linear operator on a Hilbert space as follows:

The specification of v, € P2 turns F? into a field F a xsomorphxc to @, since o - = F2.
The real axis is JR - % and the imaginary one is IR - . We rename these axes by
g-axis carried by the umt vector g, and by p-axis cameé by the umt vector P, respectively.
Clearly, p, = G, - ©%(i). Any h € F? is thus of the form h = (g, p).

The Schridinger representation p, of G2 acts on each v € S(IR,;) C L*(RR,,) by

pe(z + R) (7)) 1= 27 eldlPmigmd B s — ) VreR (7)
for all = + h € G% with h = {p,¢) (Guillemin, Sternberg, 1991), (Schempp, 1986). Here
S(R,) is the Schwartz space of IR,. Clearly,

—p-g-i=w(p,0).(0,g)) i and 2zl =e W

for some ¢ € IR. By the Stone-von Neumann theorem p, is irreducible (Schempp, 1986).

Setting = =1 and ¢ = |v,|. for any p € IR, equation (7) turns into

p(1+ (p.|e]))

el _ parmri i - I—;‘—') VreR. (8)

Operators of this form generate p(G%). of course.

Ou the other hand the U%(1)-valued function 7 — €”7= entirely describes the pe-
riodic lift v passing through v, as expressed in (3). Thus v is characterised by the unitary
linear transformation p(1 + (p. |vz{)) on L*(Rg,).

Therefore, we state:

Theorem 4 Any periodic lift ~ of 3 on P°|; with initial conditions v(0) = v, and momen-
tum p is characterised by the unitary linear transformation p,(1 -+ (p, |vz])) of L*(Rg,) with
(14 (p.|vz])) € G2. Vice versa any element (1+ (p, [v;])) characterises via p-(1+ (p, |vz])) a
unique periodic lift v of 3 with spatial initial conditions v, and momentum p. Thus v, € P2
determines a unitary representation p on L*(IR - g,) characterising the collection C2. of all
periodic lifts of 3 passing through v,.

We may reinterpret theorem 4 as follows: Any curve 7 € Cg. on P¢|3 with prescribed
momentum p is an evolution of the spin ¢, over 3. The piece of information v, is thus
transported by 4 with a velocity determined by the momentum p. Hence p.(1 + (p, |vz]))
describes this transport of a piece of information along the field line of 3 of X in terms of
a unitary linear operator. Since these operators generate the representation of G we may
state the following:
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Corollary 5 The Schridinger representation of G% describes the transport of any piece of
information (p. |vz]) € Tiy, 0)P%|s along the field line 3, with R - a as information transmis-
ston channel.

8 Time Dependent Signals Along /3, their Evolution Equation and
Detection

To construct a signal related to the internal degrees of freedom along the straight field line
3. we first need to construct the bundle Ff . of complex numbers determined by a periodic
lift ~,, of 3. We will proceed according to section seven.

To do so. let 5., be a periodic lift of 3 with initial condition ¢, € P? C F? and
momentum p. For any 7 the vector 7,,(7) € Fj, yields the orbit 5,,(7) - T,y = Fg.

Thus F4_, is turned into a field of complex numbers () as well. Its real axis is R - Il—‘*%g-l

and the imaginaryv one is IR - ,lf—zg]- X %' It is evident that
Vivg )

By =Ula} x Fi
2

is a naturally given trivial bundle of fields of complex numbers determined by 5. A bundle
of this sort will allow us to describe the mechanism of signal detection along the field line 3.
The role of the screen is taken over by FJ .

In order to implement time dependence into a smooth signal v € S(IR -3,) C L*(IR -¢,).
let :

1 (r.8) = & eVt iy ((T) Vtand V.
an element of Fj,,. Heuce

'3"'0’.(7-) pT & oF Lo
—te \ © LGP T L oY al L (0 VtandV
[ 3hor(7)] ¢ Earple(T)) and V1

or. expressed in terms of the Schrédinger representation,

v () =

vy

‘L:'(T‘ t) = i?d(‘r))(/)(f_’,v'.T + (p. |l'z|)) = "4"(7- 53 |U1-|))

In fact ify,, does not vary with 7 due to « = const. However, i ., :C — Fh’;‘;z(,) does
depend on 7. We call 1.7}%, the internal transmission of the signal v associated with the
periodic lift ~,_ of 3 having the momentum p and the frequency v.

The above construction of time dependence refers to the information transmission
channel. Let us justify this construction in terms of a Minkowski metric on IH. To do so
we reconstruct IH from the oriented Euclidean space E with its scalar product by setting
H = IR -e = E and extend <, > to all of JH by requiring < e,e >= 1. The operations on

HH are then defined by

(A1'€+h1)'(z\2'6+h2) =AM e+ A cho+Aa-hy+hy-he
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where h;-hy = h, X hy — < hy,hy > -efor all A\;,\y € IR and all h;, h, € E. The Heisenberg
algebra G2 = —| 2 Ffhas R - —t as its centre. The above construction of time dependence
implements time on lhlb axis. This suggests to multiply G2 by —a which yields

-a- g; =+R - |a|-e= Fy,
for v = 1. The Minkowski metric ( . )

on IH we have in mind is given by

(t-e+ht-eth)=—-F+<hh> VielR and heFE

with a positive real ¢. Time is thus implemented by the imaginary quaternion c -t -

=

Setting ¢ := |a| in particular yields

ftec? =~ jaf’ = -a* = (~t-a)> VteR.
¢ = |a] is correlated with the speed of .3 since |J(t)|> = |a|2.
Thus the Minkowski metric on JH reflects the speed of the horizontal transport of
information along 3. A , )
Next we turn to the evolution of . The values of v, are in the screen F? . Hence

=] -
u (i)'l.“-.‘,,z _ 7
N :

is the evolution equation of L .- 1f. for example. the signal v is a constant map. i.e.
y(7) = const. for all 7 € IR. then

=
« Ouy, o=
(Iﬂl) B e

an equation of Schrodinger type. provided p® = v. Clearly, there is a linear subspace in
L*(IR - q;) of signals ¢ for which L.,‘ satisfies a Schrodinger type of equation as an equation
of evolution.
To compute the effect of dp for the Schrodinger representation p. we write ¢, and p,
in G as

—
~

¢r =exPga V- Q and p, =expg, V' - P
respectively, where @ and P are unit vectors in G7. Hence

dp(Q)(¥)(T) = dl}(exppa 7 Q)p—ol:)7) = _l;é.n;"(-r) VreR

and

dp(P){(¥)(1) = (eXpga Ve P)ly—o(e)T) =i 7 0(7) Vre R

d
v
with

116



dp([(Q.0).(0, P)]) = —i-idrxm 4,y = wo(Q, P) 'dﬂ(%i')

yielding w?(Q, P) = 1. This means that P and @Q are orthogonal.
Now let us turn to signal detection in the most elementary form. Comparing the signals
¥, with the reference signal v'gnor yields

Vo (o) = Yphor - €71

Hence v, can be detected in F] Shor(sy T the field F shor (1) 15 rotated backwards about ¢™" T,
In this case the signals 12'.,,1,2 and the reference signal fﬁ;gor are brought into resonance: in

other words 1,717% is detected in F ;,,,,, @& In this context the filter z:'ﬂgm- generates a filter bank.
For more advanced signal detection and processing techniques as used in magnet resonance
imaging we refer for instance to (Schempp, 1998). in particular to section 2.8.

9 Periodic Lifts of 3 on P%|3, the Metaplectic Group Mp(F") and
the Projective Metaplectic Representation

Let a be constant again. Giveun v, € P2 and 5, (0) of a periodic lift 5,, of 3,

Ao (0) = 3, (0)F% + 3hor(0)

is an orthogonal splitting of the velocity of v,, at 0. Clearly the F;—component of 5,_(0) is
Y, (0)F% = p-p,, where p is the momentum. Thus the momenta of periodic lifts of .3 passing
through v, are in a one-to-one correspondence with elements in 7, P2.

Therefore, the collection C? of all periodic lifts of 3 on P?|; is in a one-to-one corre-
spondence with TP¢ (being diffeomorphic to a cylinder) via a map f : C¢ — TP, say.
Let

€1 T'Pﬂ; e F;f

be given by ¢ := —T¢ where ¢: P$ — P?¢ is the antipodal map. Thus

(wey A) = c(w_z,A) = A V{(we,A) € Ty, Py, Yu, € Py and VA€ R.
Clearly, c is two-to-one. Setting F¢ = F2\{0}, the map

eof 0% —u B

is two-to-one, turning C? into a two-fold covering of E @, It describes the correspondence
between periodic lifts in C2 and their momenta.

The symplectic group Sp(F?) acts transitively on F7 equipped with «* as symplectic
structure. Therefore, the metaplectic group Mp(F?), which is the two-fold covering of
Sp(F?), acts transitively on TP2.

Thus given u € F2, there is a smooth map
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8 : Sp(F7) — F3

given by #(A) = A(u) for all A € Sp(F?). Since o f(uw,) = co f(uy, ) for all u,, € TP?|5),
the map @ lifts smoothly to

6 : Mp(F?) — C°
such that

(cof)of=prod
where pr : Mp(F*) — Sp(F¢) is the covering map. Clearly, the orbit of Mp(F?) on C? is
all of C2. Since Mp(F?) acts on F? with a one-dimensional isotropy group (Schempp, 1998),
we may state:

Proposition 6 Mp(F?) acts transitively on C® with a one-dimensional isotropy group.

Moreover. Sp(F#) acts as an automorphism group of G2 by the operation

Alz +h) =z + A(h) Vz+heGe.

Any A € Sp(F?) determines the irreducible unitary representation p, defined by

pals +h) = p(z + Alh)) V(:+h) €eGs.

Due to the Stone-von Neumann theorem it must be equivalent to p itself, meaning that there
is an intertwining unitary operator U4 on L?(IR . ) determined up to a complex number in €';
of the absolute value one such that py = U4 0p0U;" and Uy, o Ua, = coc(A1, A2) - Uayon,
for any two .4,..4,. Here coc is a cocycle with value coc(4;. 4;) € @\{0}. Thus U is a
projective representation of Sp(F?) and hence defines a representation of M,(F2).

This observation leads us to a relation between the quantization procedure of quadratic
homogeneous polynomials on IR and the transport of information along the field line 5.

10 Quantization Procedure for Homogeneous Polynomials and
the Evolution of Information on F}?

Let 2 € O be fixed and 7 a field line of X, a straight line, with 3(0) = z.
The symplectic group operates transitively and without fixed points on the collection
B2 of symplectic bases on F2 (cf. below). This operation will be transferred to lifts of 3
onto F;’ the bundle F* restricted to 3 without the image of the zero-section. To generalise
the notion of periodic lifts of 3 with initial conditions to all of £ we proceed as follows:
At first we consider the pair of vectors v,, p, € F* where v, is the initial position and
Pz = P - Pr the initial momentum of a periodic lift v; of 3. Clearly

ale v o
“'(pfp-’c)—‘(” %
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In this context we call a basis {u, w} of F symplectic if w*(u, v) = |a|Z. There is, however,
another periodic lift v, of J starting opposite of v, and having p, as initial F*-component.
Thus the syvmplectic basis {%,p,} of F¢ defines two lifts of 3, namely 7, and ~,. This
observation initiates the following construction:

For any [ € Sp(F?)

v 1
L) Upe)) = la(x)|=.
((p) (p=)) = la(z)|

We lift the Sp(F%)-action on F? to an Mp(F¢)-action on a collection of lifts of 3 on F| 5 as
follows: Given l(%) and [(p.), the cylinder P?|s is shifted in E such that it stays perpen-
dicular to F?, passes through I(v;) and admits /(p,) as tangent vector at {(v,). This shifted
surface of rotation is denoted by Pj. Hence there is a lift ~, ,  of 3 on P| starting at
l(v,) and having l(p,) as its initial F?-component of velocity. However, there is another sur-
face P!. say. passing through —I(v,) and to which I(p,) is tangent in —{(v,) such that I(p,)
defines an orientation on P, opposite to the one of P.. if p, # 0. Hence there is another
periodic lift ~”, .~ of 3 on P! with I(p,) as F2-component of its initial velocity. Thus
the same basis {/( 1 p.)} defines two periodic lifts 5, and 7%, , , . called conjugate
svmplectic periodic lifts of .3. These are isochromatic since hoth have the same momentum
D

Let C be the collection of periodic lifts of 3 constructed as above for any basis in B2.
By construction Mp(F7) operates transitively on C’;‘ and without fixed points, turning é;’
into a manifold diffeomorphic to Mp(F?).

Therefore we may reformulate:

Proposition 7 There is a one-to-one correspondence between the collection C’;’ of symplectic
periodic lifts of 3 and the elements in Mp(F2). Thus C¢ wherits a manifold structure
making C* diffeomorphic to M p(FY). Moreover. for each A € Mp(F?2) the operator U(A)
characterises a lift of 3 in C’;‘ and vice versa.

The Lie algebra mp(F7) of Mp(F?) is isomorphic to Q%, the collection of all homo-
geneous polynomials in two variables p and ¢ defined on R - v, C F¢ with the Poisson

bracket as Lie bracket (Guillemin, Sternberg, 1991). Given any 4 € Mp(F?), let dU,4 be the
infinitesimal representation of U,y defined on Q¢. Therefore we have:

Theorem 8 Given 5 € C%, for each tangent vector k € TN,CT'; the operator dU (k) corre-
sponds to a quantization of a homogeneous quadratic polynomial and vice versa.

Since Q¢ and sp(F?) are isomorphic as Lie algebras, the representation dU of sp(F2)
yields a quantization procedure. This is to say that the tangent bundle to the collection of
lifts of 3 in C? visualises a quantization procedure of the Poisson algebra Q.

As a remark it should be emphasized that the fact that Mp(2, R) forms a two-fold
covering of the symplectic group SL(2,R) implies the non-cloning theorem in quantum
teleportation (Binz. Schempp, 1999, 2000c). Moreover, the metaplectic group introduces
the aspect of undecidability into quantum physics (Binz, Schempp, 2000c).
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